Advertisement
Review Article| Volume 37, ISSUE 2, P433-447, April 2023

Gene Therapy and Gene Editing for β-Thalassemia

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Hematology/Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Taher A.T.
        • Musallam K.M.
        • Cappellini M.D.
        β-Thalassemias.
        N Engl J Med. 2021; 384: 727-743
        • Weatherall D.J.
        The inherited diseases of hemoglobin are an emerging global health burden.
        Blood. 2010; 115: 4331-4336
        • Strocchio L.
        • Locatelli F.
        Hematopoietic stem cell transplantation in thalassemia.
        Hematol Oncol Clin North Am. 2018; 32: 317-328
        • Leonard A.
        • Tisdale J.F.
        • Bonner M.
        Gene therapy for hemoglobinopathies: beta-thalassemia, sickle cell disease.
        Hematol Oncol Clin North Am. 2022; 36: 769-795
        • Magrin E.
        • Miccio A.
        • Cavazzana M.
        Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies.
        Blood. 2019; 134: 1203-1213
        • Naldini L.
        Genetic engineering of hematopoiesis: current stage of clinical translation and future perspectives.
        EMBO Mol Med. 2019; 11https://doi.org/10.15252/emmm.201809958
        • Delville M.
        • Soheili T.
        • Bellier F.
        • et al.
        a nontoxic transduction enhancer enables highly efficient lentiviral transduction of primary murine T cells and hematopoietic stem cells.
        Mol Ther Methods Clin Dev. 2018; 10: 341-347
        • Hauber I.
        • Beschorner N.
        • Schrödel S.
        • et al.
        Improving lentiviral transduction of CD34.
        Hum Gene Ther Methods. 2018; 29: 104-113
        • Locatelli F.
        • Thompson A.A.
        • Kwiatkowski J.L.
        • et al.
        Betibeglogene autotemcel gene therapy for non-beta(0)/beta(0) genotype beta-thalassemia.
        N Engl J Med. 2022; 386: 415-427
        • Magrin E.
        • Semeraro M.
        • Hebert N.
        • et al.
        Long-term outcomes of lentiviral gene therapy for the beta-hemoglobinopathies: the HGB-205 trial.
        Nat Med. 2022; 28: 81-88
        • Negre O.
        • Eggimann A.V.
        • Beuzard Y.
        • et al.
        Gene therapy of the beta-hemoglobinopathies by lentiviral transfer of the beta(A(T87Q))-globin gene.
        Hum Gene Ther. 2016; 27: 148-165
        • Pawliuk R.
        • Westerman K.A.
        • Fabry M.E.
        • et al.
        Correction of sickle cell disease in transgenic mouse models by gene therapy.
        Science. 2001; 294: 2368-2371
        • Thompson A.A.
        • Walters M.C.
        • Kwiatkowski J.
        • et al.
        Gene therapy in patients with transfusion-dependent β-thalassemia.
        N Engl J Med. 2018; 378: 1479-1493
        • Kanter J.
        • Walters M.C.
        • Krishnamurti L.
        • et al.
        Biologic and clinical efficacy of lentiglobin for sickle cell disease.
        N Engl J Med. 2022; 386: 617-628
        • Marktel S.
        • Scaramuzza S.
        • Cicalese M.P.
        • et al.
        Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia.
        Nat Med. 2019; 25: 234-241
        • Boulad F.
        • Maggio A.
        • Wang X.
        • et al.
        Lentiviral globin gene therapy with reduced-intensity conditioning in adults with β-thalassemia: a phase 1 trial.
        Nat Med. 2022; 28: 63-70
        • Rubin R.
        New Gene Therapy for β-Thalassemia.
        JAMA. 2022; 328: 1030
        • Ochiai H.
        • Yamamoto T.
        Construction and evaluation of zinc finger nucleases.
        Methods Mol Biol. 2017; 1630: 1-24
        • Hensel G.
        • Kumlehn J.
        Genome engineering using TALENs.
        Methods Mol Biol. 2019; 1900: 195-215
        • Doudna J.A.
        • Charpentier E.
        Genome editing. The new frontier of genome engineering with CRISPR-Cas9.
        Science. 2014; 346: 1258096
        • Doudna J.A.
        The promise and challenge of therapeutic genome editing.
        Nature. 2020; 578: 229-236
        • Cromer M.K.
        • Camarena J.
        • Martin R.M.
        • et al.
        Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells.
        Nat Med. 2021; 27: 677-687
        • Forget B.G.
        Molecular basis of hereditary persistence of fetal hemoglobin.
        Ann N Y Acad Sci. 1998; 850: 38-44
        • Vinjamur D.S.
        • Bauer D.E.
        • Orkin S.H.
        Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies.
        Br J Haematol. 2018; 180: 630-643
        • Martyn G.E.
        • Wienert B.
        • Yang L.
        • et al.
        Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding.
        Nat Genet. 2018; 50: 498-503
        • Masuda T.
        • Wang X.
        • Maeda M.
        • et al.
        Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin.
        Science. 2016; 351: 285-289
        • Frangoul H.
        • Altshuler D.
        • Cappellini M.D.
        • et al.
        CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia.
        N Engl J Med. 2021; 384: 252-260
        • Locatelli F.
        • Frangoul H.
        • Corbacioglu S.
        • et al.
        Efficacy and safety of a single dose of CTX for transfusion-dependent beta-thalassemia and severe sickle cell disease.
        HemaSphere. 2022; 6: S3
        • Fu B.
        • Liao J.
        • Chen S.
        • et al.
        CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric beta(0)/beta(0) transfusion-dependent beta-thalassemia.
        Nat Med. 2022; 28: 1573-1580
        • Walters M.C.
        • Smith A.R.
        • Schiller G.C.
        • et al.
        Updated Results of a Phase 1/2 Clinical Study of Zinc Finger Nuclease-Mediated Editing of BCL11A in Autologous Hematopoietic Stem Cells for Transfusion-Dependent Beta Thalassemia.
        Blood. 2021; 138: 3974
        • Métais J.Y.
        • Doerfler P.A.
        • Mayuranathan T.
        • et al.
        Genome editing of HBG1 and HBG2 to induce fetal hemoglobin.
        Blood Adv. 2019; 3: 3379-3392
        • Weber L.
        • Frati G.
        • Felix T.
        • et al.
        Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype.
        Sci Adv. 2020; 6https://doi.org/10.1126/sciadv.aay9392
        • Humbert O.
        • Radtke S.
        • Samuelson C.
        • et al.
        Therapeutically relevant engraftment of a CRISPR-Cas9-edited HSC-enriched population with HbF reactivation in nonhuman primates.
        Sci Transl Med. 2019; 11https://doi.org/10.1126/scitranslmed.aaw3768
        • Traxler E.A.
        • Yao Y.
        • Wang Y.D.
        • et al.
        A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition.
        Nat Med. 2016; 22: 987-990
        • Ye L.
        • Wang J.
        • Tan Y.
        • et al.
        Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia.
        Proc Natl Acad Sci U S A. 2016; 113: 10661-10665
        • Lux C.T.
        • Pattabhi S.
        • Berger M.
        • et al.
        TALEN-Mediated Gene Editing of.
        Mol Ther Methods Clin Dev. 2019; 12: 175-183
        • Maeda T.
        • Ito K.
        • Merghoub T.
        • et al.
        LRF is an essential downstream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis.
        Dev Cell. 2009; 17: 527-540
        • Gaudelli N.M.
        • Komor A.C.
        • Rees H.A.
        • et al.
        Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage.
        Nature. 2017; 551: 464-471
        • Komor A.C.
        • Kim Y.B.
        • Packer M.S.
        • et al.
        Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
        Nature. 2016; 533: 420-424
        • Anzalone A.V.
        • Koblan L.W.
        • Liu D.R.
        Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.
        Nat Biotechnol. 2020; 38: 824-844
        • Antoniou P.
        • Miccio A.
        • Brusson M.
        Base and Prime Editing Technologies for Blood Disorders.
        Front Genome Ed. 2021; 3: 618406
        • Wang L.
        • Li L.
        • Ma Y.
        • et al.
        Reactivation of γ-globin expression through Cas9 or base editor to treat β-hemoglobinopathies.
        Cell Res. 2020; 30: 276-278
        • Li C.
        • Georgakopoulou A.
        • Mishra A.
        • et al.
        In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice.
        Blood Adv. 2021; 5: 1122-1135
        • Ravi N.S.
        • Wienert B.
        • Wyman S.K.
        • et al.
        Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin.
        Elife. 2022; 11https://doi.org/10.7554/eLife.65421
        • Antoniou P.
        • Hardouin G.
        • Martinucci P.
        • et al.
        Base-editing-mediated dissection of a gamma-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression.
        Nat Commun. 2022; 13: 6618
        • Bhatia S.
        Therapy-related myelodysplasia and acute myeloid leukemia.
        Semin Oncol. 2013; 40: 666-675
        • Cesana D.
        • Ranzani M.
        • Volpin M.
        • et al.
        Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo.
        Mol Ther. 2014; 22: 774-785
        • Baum C.
        • Kustikova O.
        • Modlich U.
        • et al.
        Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors.
        Hum Gene Ther. 2006; 17: 253-263
        • Cavazzana-Calvo M.
        • Payen E.
        • Negre O.
        • et al.
        Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia.
        Nature. 2010; 467: 318-322
        • Bonner M.A.
        • Morales-Hernandez A.
        • Zhou S.
        • et al.
        3' UTR-truncated HMGA2 overexpression induces non-malignant in vivo expansion of hematopoietic stem cells in non-human primates.
        Mol Ther Methods Clin Dev. 2021; 21: 693-701
        • Hsieh M.M.
        • Bonner M.
        • Pierciey F.J.
        • et al.
        Myelodysplastic syndrome unrelated to lentiviral vector in a patient treated with gene therapy for sickle cell disease.
        Blood Adv. 2020; 4: 2058-2063
        • Goyal S.
        • Tisdale J.
        • Schmidt M.
        • et al.
        Acute myeloid leukemia case after gene therapy for sickle cell disease.
        N Engl J Med. 2022; 386: 138-147
        • Jones R.J.
        • DeBaun M.R.
        Leukemia after gene therapy for sickle cell disease: insertional mutagenesis, busulfan, both, or neither.
        Blood. 2021; 138: 942-947
        • Lidonnici M.R.
        • Paleari Y.
        • Tiboni F.
        • et al.
        Multiple Integrated Non-clinical Studies Predict the Safety of Lentivirus-Mediated Gene Therapy for β-Thalassemia.
        Mol Ther Methods Clin Dev. 2018; 11: 9-28
        • Kim D.
        • Lim K.
        • Kim S.T.
        • et al.
        Genome-wide target specificities of CRISPR RNA-guided programmable deaminases.
        Nat Biotechnol. 2017; 35: 475-480
        • Kim D.
        • Luk K.
        • Wolfe S.A.
        • et al.
        Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases.
        Annu Rev Biochem. 2019; 88: 191-220
        • Kim D.Y.
        • Moon S.B.
        • Ko J.-H.
        • et al.
        Unbiased investigation of specificities of prime editing systems in human cells.
        Nucleic Acids Res. 2020; 48: 10576-10589
        • Tsai S.Q.
        • Joung J.K.
        Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases.
        Nat Rev Genet. 2016; 17: 300-312
        • Cheng Y.
        • Tsai S.Q.
        Illuminating the genome-wide activity of genome editors for safe and effective therapeutics.
        Genome Biol. 2018; 19: 226
        • Leibowitz M.L.
        • Papathanasiou S.
        • Doerfler P.A.
        • et al.
        Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing.
        Nat Genet. 2021; 53: 895-905
        • Enache O.M.
        • Rendo V.
        • Abdusamad M.
        • et al.
        Cas9 activates the p53 pathway and selects for p53-inactivating mutations.
        Nat Genet. 2020; 52: 662-668
        • Haapaniemi E.
        • Botla S.
        • Persson J.
        • et al.
        CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response.
        Nat Med. 2018; 24: 927-930
        • Ihry R.J.
        • Worringer K.A.
        • Salick M.R.
        • et al.
        p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells.
        Nat Med. 2018; 24: 939-946
        • Kosicki M.
        • Tomberg K.
        • Bradley A.
        Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements.
        Nat Biotechnol. 2018; 36: 765-771
        • Blattner G.
        • Cavazza A.
        • Thrasher A.J.
        • et al.
        Gene editing and genotoxicity: targeting the off-targets.
        Front Genome Ed. 2020; 2: 613252
        • Grünewald J.
        • Zhou R.
        • Garcia S.P.
        • et al.
        Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
        Nature. 2019; 569: 433-437
        • Zhou C.
        • Sun Y.
        • Yan R.
        • et al.
        Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis.
        Nature. 2019; 571: 275-278
        • Doman J.L.
        • Raguram A.
        • Newby G.A.
        • et al.
        Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors.
        Nat Biotechnol. 2020; 38: 620-628
        • Jeong Y.K.
        • Song B.
        • Bae S.
        Current Status and Challenges of DNA Base Editing Tools.
        Mol Ther. 2020; 28: 1938-1952
        • Kim D.
        • Kim D.E.
        • Lee G.
        • et al.
        Genome-wide target specificity of CRISPR RNA-guided adenine base editors.
        Nat Biotechnol. 2019; 37: 430-435
        • Yu Y.
        • Leete T.C.
        • Born D.A.
        • et al.
        Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity.
        Nat Commun. 2020; 11https://doi.org/10.1038/s41467-020-15887-5
        • Zuo E.
        • Sun Y.
        • Yuan T.
        • et al.
        A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects.
        Nat Methods. 2020; 17: 600-604
        • Liang M.
        • Sui T.
        • Liu Z.
        • et al.
        AcrIIA5 suppresses base editors and reduces their off-target effects.
        Cells. 2020; 9: 1786
        • Coelho M.A.
        • De Braekeleer E.
        • Firth M.
        • et al.
        CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs.
        Nat Commun. 2020; 11: 4132
        • Naeem M.
        • Majeed S.
        • Hoque M.Z.
        • et al.
        Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing.
        Cells. 2020; 9: 1608
        • Richter M.F.
        • Zhao K.T.
        • Eton E.
        • et al.
        Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity.
        Nat Biotechnol. 2020; 38: 883-891
        • Beaudoin F.L.
        • Richardson M.
        • Synnott P.G.
        • et al.
        Betibeglogene Autotemcel for Beta Thalassemia: Effectiveness and Value; Evidence Report.
        Institute for Clinical and Economic Review, 2022 (Available at:) (Accessed June 2, 2022)
        • Fukuda S.
        • Bian H.
        • King A.G.
        • et al.
        The chemokine GROβ mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment.
        Blood. 2007; 110: 860-869
        • Hoggatt J.
        • Singh P.
        • Tate T.A.
        • et al.
        Rapid Mobilization Reveals a Highly Engraftable Hematopoietic.
        Stem Cell. Cell. 2018; 172: 191-204.e10
        • Czechowicz A.
        • Palchaudhuri R.
        • Scheck A.
        • et al.
        Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation.
        Nat Commun. 2019; 10: 617
        • Palchaudhuri R.
        • Saez B.
        • Hoggatt J.
        • et al.
        Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin.
        Nat Biotechnol. 2016; 34: 738-745
        • Cullis P.R.
        • Hope M.J.
        Lipid Nanoparticle Systems for Enabling Gene Therapies.
        Mol Ther. 2017; 25: 1467-1475
        • Raguram A.
        • Banskota S.
        • Liu D.R.
        Therapeutic in vivo delivery of gene editing agents.
        Cell. 2022; 185: 2806-2827
        • Aiuti A.
        • Pasinelli F.
        • Naldini L.
        Ensuring a future for gene therapy for rare diseases.
        Nat Med. 2022; 28: 1985-1988