Advertisement
Review Article| Volume 37, ISSUE 2, P353-363, April 2023

Pathogenic Mechanisms in Thalassemia II

Iron Overload

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Hematology/Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Farmakis D.
        • Porter J.
        • Taher A.
        • et al.
        2021 Thalassaemia International Federation Guidelines for the Management of Transfusion-dependent Thalassemia.
        HemaSphere. 2022; 6: e732
        • Pippard M.J.
        • Callender S.T.
        • Warner G.T.
        • et al.
        Iron absorption and loading in beta-thalassaemia intermedia.
        Lancet. 1979; 2: 819-821
        • Breuer W.
        • Ronson A.
        • Slotki I.N.
        • et al.
        The assessment of serum nontransferrin-bound iron in chelation therapy and iron supplementation.
        Blood. 2000; 95: 2975-2982
        • Knutson M.D.
        Non-transferrin-bound iron transporters.
        Free Radic Biol Med. 2019; 133: 101-111
        • Jenkitkasemwong S.
        • Wang C.Y.
        • Coffey R.
        • et al.
        SLC39A14 Is Required for the Development of Hepatocellular Iron Overload in Murine Models of Hereditary Hemochromatosis.
        Cell Metab. 2015; 22: 138-150
        • Coffey R.
        • Knutson M.D.
        The plasma membrane metal-ion transporter ZIP14 contributes to non-transferrin-bound iron uptake by human beta cells.
        Am J Physiol Cell Physiol. 2016; 312: C169-C175
        • Craven C.M.
        • Alexander J.
        • Eldridge M.
        • et al.
        Tissue Distribution and Clearance Kinetics of Non-Transferrin-Bound Iron in the Hypotransferrinemic Mouse: A Rodent Model for Hemochromatosis.
        Proc Natl Acad Sci. 1987; 84: 3457-3461
        • Chin J.
        • Powell L.W.
        • Ramm L.E.
        • et al.
        Utility of hepatic or total body iron burden in the assessment of advanced hepatic fibrosis in HFE hemochromatosis.
        Sci Rep. 2019; 9: 20234
        • Piga A.
        • Longo F.
        • Duca L.
        • et al.
        High nontransferrin bound iron levels and heart disease in thalassemia major.
        Am J Hematol. 2009; 84: 29-33
        • Origa R.
        • Barella S.
        • Argiolas G.M.
        • et al.
        No evidence of cardiac iron in 20 never- or minimally-transfused patients with thalassemia intermedia.
        Haematol-hematol J. 2008; 93: 1095-1096
        • Ramm GrantA.
        • Ruddell R.
        Hepatotoxicity of Iron Overload: Mechanisms of Iron-Induced Hepatic Fibrogenesis.
        Semin Liver Dis. 2005; 25: 433-449
        • Stefanova D.
        • Raychev A.
        • Arezes J.
        • et al.
        Endogenous hepcidin and its agonist mediate resistance to selected infections by clearing non-transferrin-bound iron.
        Blood. 2017; 130: 245-257
        • Stefanova D.
        • Raychev A.
        • Deville J.
        • et al.
        Hepcidin Protects against Lethal Escherichia coli Sepsis in Mice Inoculated with Isolates from Septic Patients.
        Infect Immun. 2018; 86: e00253-e00318
        • Wang S.C.
        • Lin K.H.
        • Chern J.P.
        • et al.
        Severe bacterial infection in transfusion-dependent patients with thalassemia major.
        Clin Infectdis. 2003; 37: 984-988
        • Vento S.
        • Cainelli F.
        • Cesario F.
        Infections and thalassaemia.
        Lancet Infect Dis. 2006; 6: 226-233
        • Coffey R.
        • Ganz T.
        Iron homeostasis: An anthropocentric perspective.
        J Biol Chem. 2017; 292: 12727-12734
        • Aschemeyer S.
        • Qiao B.
        • Stefanova D.
        • et al.
        Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin.
        Blood. 2018; 131: 899-910
        • Nemeth E.
        • Tuttle M.S.
        • Powelson J.
        • et al.
        Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization.
        Science. 2004; 306: 2090-2093
        • Fisher A.L.
        • Babitt J.L.
        Coordination of iron homeostasis by bone morphogenetic proteins: Current understanding and unanswered questions.
        Dev Dyn. 2022; 251: 26-46
        • Wang C.Y.
        • Xiao X.
        • Bayer A.
        • et al.
        Ablation of Hepatocyte Smad1, Smad5, and Smad8 Causes Severe Tissue Iron Loading and Liver Fibrosis in Mice.
        Hepatology. 2019; 70: 1986-2002
        • Nemeth E.
        • Rivera S.
        • Gabayan V.
        • et al.
        IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin.
        J Clininvest. 2004; 113: 1271-1276
        • Pietrangelo A.
        • Dierssen U.
        • Valli L.
        • et al.
        STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo.
        Gastroenterology. 2007; 132: 294-300
        • Verga Falzacappa M.V.
        • Vujic S.M.
        • Kessler R.
        • et al.
        STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation.
        Blood. 2007; 109: 353-358
        • Wrighting D.M.
        • Andrews N.C.
        Interleukin-6 induces hepcidin expression through STAT3.
        Blood. 2006; 108: 3204-3209
        • Finch C.
        Regulators of iron balance in humans.
        Blood. 1994; 84: 1697-1702
        • Ashby D.R.
        • Gale D.P.
        • Busbridge M.
        • et al.
        Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin.
        Haematologica. 2010; 95: 505-508
        • Pak M.
        • Lopez M.A.
        • Gabayan V.
        • et al.
        Suppression of hepcidin during anemia requires erythropoietic activity.
        Blood. 2006; 108: 3730-3735
        • Vokurka M.
        • Krijt J.
        • Sulc K.
        • et al.
        Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis.
        Physiol Res. 2006; 55: 667-674
        • Kearney S.L.
        • Nemeth E.
        • Neufeld E.J.
        • et al.
        Urinary hepcidin in congenital chronic anemias.
        PediatrBlood Cancer. 2007; 48: 57-63
        • Origa R.
        • Galanello R.
        • Ganz T.
        • et al.
        Liver iron concentrations and urinary hepcidin in beta-thalassemia.
        Haematologica. 2007; 92: 583-588
        • Kattamis A.
        • Papassotiriou I.
        • Palaiologou D.
        • et al.
        The effects of erythropoetic activity and iron burden on hepcidin expression in patients with thalassemia major.
        Haematologica. 2006; 91: 809-812
        • Nemeth E.
        • Ganz T.
        Hepcidin and iron-loading anemias.
        Haematologica. 2006; 91: 727-732
        • Papanikolaou G.
        • Tzilianos M.
        • Christakis J.I.
        • et al.
        Hepcidin in iron overload disorders.
        Blood. 2005; 105: 4103-4105
        • Gardenghi S.
        • Marongiu M.F.
        • Ramos P.
        • et al.
        Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin.
        Blood. 2007; 109: 5027-5035
        • Breda L.
        • Gardenghi S.
        • Guy E.
        • et al.
        Exploring the Role of Hepcidin, an Antimicrobial and Iron Regulatory Peptide, in Increased Iron Absorption in {beta}-Thalassemia.
        Ann New York Acad Sci. 2005; 1054: 417-422
        • Adamsky K.
        • Weizer O.
        • Amariglio N.
        • et al.
        Decreased hepcidin mRNA expression in thalassemic mice.
        Br J Haematol. 2004; 124: 123-124
        • Kawabata H.
        • Doisaki S.
        • Okamoto A.
        • et al.
        A case of congenital dyserythropoietic anemia type 1 in a Japanese adult with a CDAN1 gene mutation and an inappropriately low serum hepcidin-25 level.
        Intern Med. 2012; 51: 917-920
        • Casanovas G.
        • Swinkels D.W.
        • Altamura S.
        • et al.
        Growth differentiation factor 15 in patients with congenital dyserythropoietic anaemia (CDA) type II.
        J Molmed(berl). 2011; 89: 811-816
        • Tamary H.
        • Shalev H.
        • Perez-Avraham G.
        • et al.
        Elevated growth differentiation factor 15 expression in patients with congenital dyserythropoietic anemia type I.
        Blood. 2008; 112: 5241-5244
        • Tanno T.
        • Bhanu N.V.
        • Oneal P.A.
        • et al.
        High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin.
        Nat Med. 2007; 13: 1096-1101
        • Kautz L.
        • Jung G.
        • Valore E.V.
        • et al.
        Identification of erythroferrone as an erythroid regulator of iron metabolism.
        Nat Genet. 2014; 46: 678-684
        • Coffey R.
        • Sardo U.
        • Kautz L.
        • et al.
        Erythroferrone is not required for the glucoregulatory and hematologic effects of chronic erythropoietin treatment in mice.
        Physiol Rep. 2018; 6: e13890
        • Arezes J.
        • Foy N.
        • McHugh K.
        • et al.
        Erythroferrone inhibits the induction of hepcidin by BMP6.
        Blood. 2018; 132: 1473-1477
        • Wang C.Y.
        • Xu Y.
        • Traeger L.
        • et al.
        Erythroferrone lowers hepcidin by sequestering BMP2/6 heterodimer from binding to the BMP type I receptor ALK3.
        Blood. 2020; 135: 453-456
        • Ganz T.
        • Jung G.
        • Naeim A.
        • et al.
        Immunoassay for human serum erythroferrone.
        Blood. 2017; 130: 1243-1246
        • Kautz L.
        • Jung G.
        • Du X.
        • et al.
        Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of beta-thalassemia.
        Blood. 2015; 126: 2031-2037
        • Mirciov C.S.G.
        • Wilkins S.J.
        • Hung G.C.C.
        • et al.
        Circulating iron levels influence the regulation of hepcidin following stimulated erythropoiesis.
        Haematologica. 2018; 103: 1616-1626
        • Ramos E.
        • Kautz L.
        • Rodriguez R.
        • et al.
        Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice.
        Hepatology. 2011; 53: 1333-1341
        • Corradini E.
        • Meynard D.
        • Wu Q.
        • et al.
        Serum and liver iron differently regulate the bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway in mice.
        Hepatology. 2011; 54: 273-284
        • Guillemot J.
        • Canuel M.
        • Essalmani R.
        • et al.
        Implication of the proprotein convertases in iron homeostasis: proprotein convertase 7 sheds human transferrin receptor 1 and furin activates hepcidin.
        Hepatology. 2013; 57: 2514-2524
        • Flanagan J.M.
        • Peng H.
        • Wang L.
        • et al.
        Soluble Transferrin Receptor-1 Levels in Mice Do Not Affect Iron Absorption.
        Acta Haematol. 2006; 116: 249-254
        • Fillebeen C.
        • Gkouvatsos K.
        • Fragoso G.
        • et al.
        Mice are poor heme absorbers and do not require intestinal Hmox1 for dietary heme iron assimilation.
        Haematologica. 2015; 100: e334-e337
        • Schwartz A.J.
        • Das N.K.
        • Ramakrishnan S.K.
        • et al.
        Hepatic hepcidin/intestinal HIF-2alpha axis maintains iron absorption during iron deficiency and overload.
        J Clin Invest. 2019; 129: 336-348
        • Anderson E.R.
        • Taylor M.
        • Xue X.
        • et al.
        Intestinal HIF2alpha promotes tissue-iron accumulation in disorders of iron overload with anemia.
        Proc Natl Acad Sci U S A. 2013; 110: E4922-E4930
        • Truman-Rosentsvit M.
        • Berenbaum D.
        • Spektor L.
        • et al.
        Ferritin is secreted via 2 distinct nonclassical vesicular pathways.
        Blood. 2018; 131: 342-352
        • Cohen L.A.
        • Gutierrez L.
        • Weiss A.
        • et al.
        Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway.
        Blood. 2010; 116: 1574-1584
        • Musallam K.M.
        • Cappellini M.D.
        • Taher A.T.
        Iron overload in beta-thalassemia intermedia: an emerging concern.
        Curr Opin Hematol. 2013; 20: 187-192