Advertisement
Review Article| Volume 37, ISSUE 2, P341-351, April 2023

Pathogenic Mechanisms in Thalassemia I

Ineffective Erythropoiesis and Hypercoagulability

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Hematology/Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Longo F.
        • Piolatto A.
        • Ferrero G.B.
        • et al.
        Ineffective erythropoiesis in beta-thalassaemia: key steps and therapeutic options by drugs.
        Int J Mol Sci. 2021; 22: 7229
        • Eggold J.T.
        • Rankin E.B.
        Erythropoiesis, EPO, macrophages, and bone.
        Bone. 2019; 119: 36-41
        • Zivot A.
        • Lipton J.M.
        • Narla A.
        • et al.
        insights into pathophysiology and treatments in 2017.
        Mol Med. 2018; 24: 1-15
        • Gupta R.
        • Musallam K.M.
        • Taher A.T.
        • et al.
        Ineffective erythropoiesis: anemia and iron overload.
        Hematol Oncol Clin North Am. 2018; 32: 213-221
        • Tusi B.K.
        • Wolock S.L.
        • Weinreb C.
        • et al.
        Population snapshots predict early haematopoietic and erythroid hierarchies.
        Nature. 2018; 555: 54-60
        • Chen K.
        • Liu J.
        • Heck S.
        • et al.
        Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis.
        Proc Natl Acad Sci U S A. 2009; 106: 17413-17418
        • Dulmovits B.M.
        • Hom J.
        • Narla A.
        • et al.
        Characterization, regulation, and targeting of erythroid progenitors in normal and disordered human erythropoiesis.
        Curr Opin Hematol. 2017; 24: 159-166
        • An X.
        • Schulz V.P.
        • Li J.
        • et al.
        Global transcriptome analyses of human and murine terminal erythroid differentiation.
        Blood. 2014; 123: 3466-3477
        • Chasis J.A.
        • Mohandas N.
        Erythroblastic islands: niches for erythropoiesis.
        Blood. 2008; 112: 470-478
        • Chasis J.A.
        Erythroblastic islands: specialized microenvironmental niches for erythropoiesis.
        Curr Opin Hematol. 2006; 13: 137-141
        • Mohandas N.
        • Chasis J.A.
        The erythroid niche: molecular processes occurring within erythroblastic islands.
        Transfus Clin Biol. 2010; 17: 110-111
        • Valent P.
        • Busche G.
        • Theurl I.
        • et al.
        Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts.
        Haematologica. 2018; 103: 1593-1603
      1. Bhoopalan SV, Huang LJ, Weiss MJ. Erythropoietin regulation of red blood cell production: from bench to bedside and back, F1000Res, 9, 2020, F1000 Faculty Rev-1153.

        • Kapitsinou P.P.
        • Liu Q.
        • Unger T.L.
        • et al.
        Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia.
        Blood. 2010; 116: 3039-3048
        • Witthuhn B.A.
        • Quelle F.W.
        • Silvennoinen O.
        • et al.
        JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin.
        Cell. 1993; 74: 227-236
        • Grebien F.
        • Kerenyi M.A.
        • Kovacic B.
        • et al.
        Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2.
        Blood. 2008; 111: 4511-4522
        • Libani I.V.
        • Guy E.C.
        • Melchiori L.
        • et al.
        Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia.
        Blood. 2008; 112: 875-885
        • Zhang Y.
        • Wang L.
        • Dey S.
        • et al.
        Erythropoietin action in stress response, tissue maintenance and metabolism.
        Int J Mol Sci. 2014; 15: 10296-10333
        • Blank U.
        • Karlsson S.
        TGF-beta signaling in the control of hematopoietic stem cells.
        Blood. 2015; 125: 3542-3550
        • Koulnis M.
        • Liu Y.
        • Hallstrom K.
        • et al.
        Negative autoregulation by Fas stabilizes adult erythropoiesis and accelerates its stress response.
        PLoS One. 2011; 6: e21192
        • Parisi S.
        • Finelli C.
        • Fazio A.
        • et al.
        Clinical and molecular insights in erythropoiesis regulation of signal transduction pathways in myelodysplastic syndromes and beta-thalassemia.
        Int J Mol Sci. 2021; 22: 827
        • Kim A.
        • Nemeth E.
        New insights into iron regulation and erythropoiesis.
        Curr Opin Hematol. 2015; 22: 199
        • Paulson R.F.
        • Shi L.
        • Wu D.C.
        Stress erythropoiesis: new signals and new stress progenitor cells.
        Curr Opin Hematol. 2011; 18: 139-145
        • Crielaard B.J.
        • Rivella S.
        beta-Thalassemia and Polycythemia vera: targeting chronic stress erythropoiesis.
        Int J Biochem Cell Biol. 2014; 51: 89-92
        • Nandakumar S.K.
        • Ulirsch J.C.
        • Sankaran V.G.
        Advances in understanding erythropoiesis: evolving perspectives.
        Br J Haematol. 2016; 173: 206-218
        • Camaschella C.
        • Nai A.
        Ineffective erythropoiesis and regulation of iron status in iron loading anaemias.
        Br J Haematol. 2016; 172: 512-523
        • Anderson E.R.
        • Taylor M.
        • Xue X.
        • et al.
        Intestinal HIF2alpha promotes tissue-iron accumulation in disorders of iron overload with anemia.
        Proc Natl Acad Sci U S A. 2013; 110: E4922-E4930
        • Gardenghi S.
        • Marongiu M.F.
        • Ramos P.
        • et al.
        Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin.
        Blood. 2007; 109: 5027-5035
        • Ramos P.
        • Casu C.
        • Gardenghi S.
        • et al.
        Macrophages support pathological erythropoiesis in polycythemia vera and beta-thalassemia.
        Nat Med. 2013; 19: 437-445
        • Arlet J.-B.
        • Ribeil J.-A.
        • Guillem F.
        • et al.
        HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia.
        Nature. 2014; 514: 242-246
        • De Maria R.
        • Zeuner A.
        • Eramo A.
        • et al.
        Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1.
        Nature. 1999; 401: 489-493
        • Arlet J.B.
        • Dussiot M.
        • Moura I.C.
        • et al.
        Novel players in beta-thalassemia dyserythropoiesis and new therapeutic strategies.
        Curr Opin Hematol. 2016; 23: 181-188
        • Chen J.J.
        Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias.
        Blood. 2007; 109: 2693-2699
        • Chen J.-J.
        • Zhang S.
        Heme-regulated eIF2α kinase in erythropoiesis and hemoglobinopathies.
        Blood. 2019; 134: 1697-1707
        • Rivella S.
        Iron metabolism under conditions of ineffective erythropoiesis in beta-thalassemia.
        Blood. 2019; 133: 51-58
        • Guerra A.
        • Oikonomidou P.R.
        • Sinha S.
        • et al.
        Lack of Gdf11 does not improve anemia or prevent the activity of RAP-536 in a mouse model of beta-thalassemia.
        Blood. 2019; 134: 568-572
        • Tanno T.
        • Noel P.
        • Miller J.L.
        Growth differentiation factor 15 in erythroid health and disease.
        Curr Opin Hematol. 2010; 17: 184-190
        • Musallam K.M.
        • Taher A.T.
        • Duca L.
        • et al.
        Levels of growth differentiation factor-15 are high and correlate with clinical severity in transfusion-independent patients with beta thalassemia intermedia.
        Blood Cells Mol Dis. 2011; 47: 232-234
        • Salussoglia I.
        • Volpe G.
        • Fracchia S.
        • et al.
        Growth differentiation factor 15 (GDF15) and erythropoietin (EPO) levels in beta talassemia major patients.
        Blood. 2008; 112: 1881
        • Taher A.T.
        • Cappellini M.D.
        • Bou-Fakhredin R.
        • et al.
        Hypercoagulability and vascular disease.
        Hematol Oncol Clin North Am. 2018; 32: 237-245
        • Winichagoon P.
        • Fucharoen S.
        • Wasi P.
        Increased circulating platelet aggregates in thalassaemia.
        Southeast Asian J Trop Med Public Health. 1981; 12: 556-560
        • Eldor A.
        • Lellouche F.
        • Goldfarb A.
        • et al.
        In vivo platelet activation in β-thalassemia major reflected by increased platelet-thromboxane urinary metabolites.
        Blood. 1991; 77: 1749-1753
        • Goldschmidt N.
        • Spectre G.
        • Brill A.
        • et al.
        Increased platelet adhesion under flow conditions is induced by both thalassemic platelets and red blood cells.
        Thromb Haemost. 2008; 100: 864-870
        • Hershko C.
        • Graham G.
        • Bates G.W.
        • et al.
        Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity.
        Br J Haematol. 1978; 40: 255-263
        • Kuypers F.A.
        • de Jong K.
        The role of phosphatidylserine in recognition and removal of erythrocytes.
        Cell Mol Biol (Noisy-le-grand). 2004; 50: 147-158
        • Tavazzi D.
        • Duca L.
        • Graziadei G.
        • et al.
        Membrane-bound iron contributes to oxidative damage of beta-thalassaemia intermedia erythrocytes.
        Br J Haematol. 2001; 112: 48-50
        • Borenstain-Ben Yashar V.
        • Barenholz Y.
        • Hy-Am E.
        • et al.
        Phosphatidylserine in the outer leaflet of red blood cells from beta-thalassemia patients may explain the chronic hypercoagulable state and thrombotic episodes.
        Am J Hematol. 1993; 44: 63-65
        • Helley D.
        • Eldor A.
        • Girot R.
        • et al.
        Increased procoagulant activity of red blood cells from patients with homozygous sickle cell disease and beta-thalassemia.
        Thromb Haemost. 1996; 76: 322-327
        • Cappellini M.D.
        • Robbiolo L.
        • Bottasso B.M.
        • et al.
        Venous thromboembolism and hypercoagulability in splenectomized patients with thalassaemia intermedia.
        Br J Haematol. 2000; 111: 467-473
        • Eldor A.
        • Rachmilewitz E.A.
        The hypercoagulable state in thalassemia.
        Blood. 2002; 99: 36-43
        • Butthep P.
        • Bunyaratvej A.
        • Funahara Y.
        • et al.
        Alterations in vascular endothelial cell-related plasma proteins in thalassaemic patients and their correlation with clinical symptoms.
        Thromb Haemost. 1995; 74: 1045-1049
        • Butthep P.
        • Rummavas S.
        • Wisedpanichkij R.
        • et al.
        Increased circulating activated endothelial cells, vascular endothelial growth factor, and tumor necrosis factor in thalassemia.
        Am J Hematol. 2002; 70: 100-106
        • Iolascon A.
        • Giordano P.
        • Storelli S.
        • et al.
        Thrombophilia in thalassemia major patients: analysis of genetic predisposing factors.
        Haematologica. 2001; 86: 1112-1113
        • Taher A.T.
        • Otrock Z.K.
        • Uthman I.
        • et al.
        Thalassemia and hypercoagulability.
        Blood Rev. 2008; 22: 283-292
        • Huang Y.
        • Long Y.
        • Deng D.
        • et al.
        Alterations of anticoagulant proteins and soluble endothelial protein C receptor in thalassemia patients of Chinese origin.
        Thromb Res. 2018; 172: 61-66
        • Angchaisuksiri P.
        • Atichartakarn V.
        • Aryurachai K.
        • et al.
        Hemostatic and thrombotic markers in patients with hemoglobin E/beta-thalassemia disease.
        Am J Hematol. 2007; 82: 1001-1004
        • Sirachainan N.
        Thalassemia and the hypercoagulable state.
        Thromb Res. 2013; 132: 637-641
        • Sharma S.
        • Raina V.
        • Chandra J.
        • et al.
        Lupus anticoagulant and anticardiolipin antibodies in polytransfused beta thalassemia major.
        Hematology. 2006; 11: 287-290
        • Tantawy A.A.
        • Adly A.A.
        • Ismail E.A.
        • et al.
        Endothelial nitric oxide synthase gene intron 4 variable number tandem repeat polymorphism in beta-thalassemia major: relation to cardiovascular complications.
        Blood Coagul Fibrinolysis. 2015; 26: 419-425
        • Auer J.W.
        • Berent R.
        • Weber T.
        • et al.
        Iron metabolism and development of atherosclerosis.
        Circulation. 2002; 106 ([author reply: e7]): e7
        • Aessopos A.
        • Tsironi M.
        • Andreopoulos A.
        • et al.
        Heart disease in thalassemia intermedia.
        Hemoglobin. 2009; 33: S170-S176
        • Taher A.
        • Isma’eel H.
        • Mehio G.
        • et al.
        Prevalence of thromboembolic events among 8,860 patients with thalassaemia major and intermedia in the Mediterranean area and Iran.
        Thromb Haemost. 2006; 96: 488-491
        • Taher A.T.
        • Musallam K.M.
        • Karimi M.
        • et al.
        Splenectomy and thrombosis: the case of thalassemia intermedia.
        J Thromb Haemost. 2010; 8: 2152-2158
        • Taher A.T.
        • Musallam K.M.
        • Karimi M.
        • et al.
        Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the OPTIMAL CARE study.
        Blood. 2010; 115: 1886-1892
        • Musallam K.M.
        • Taher A.T.
        • Karimi M.
        • et al.
        Cerebral infarction in beta-thalassemia intermedia: breaking the silence.
        Thromb Res. 2012; 130: 695-702
        • Taher A.T.
        • Musallam K.M.
        • Nasreddine W.
        • et al.
        Asymptomatic brain magnetic resonance imaging abnormalities in splenectomized adults with thalassemia intermedia.
        J Thromb Haemost. 2010; 8: 54-59
        • Musallam K.M.
        • Beydoun A.
        • Hourani R.
        • et al.
        Brain magnetic resonance angiography in splenectomized adults with beta-thalassemia intermedia.
        Eur J Haematol. 2011; 87: 539-546
        • Karimi M.
        • Bagheri H.
        • Rastgu F.
        • et al.
        Magnetic resonance imaging to determine the incidence of brain ischaemia in patients with beta-thalassaemia intermedia.
        Thromb Haemost. 2010; 103: 989-993
        • Karimi M.
        • Toosi F.
        • Haghpanah S.
        • et al.
        The frequency of silent cerebral ischemia in patients with transfusion-dependent beta-thalassemia major.
        Ann Hematol. 2016; 95: 135-139
        • Pazgal I.
        • Inbar E.
        • Cohen M.
        • et al.
        High incidence of silent cerebral infarcts in adult patients with beta thalassemia major.
        Thromb Res. 2016; 144: 119-122
        • Taher A.
        • Vichinsky E.
        • Musallam K.
        • et al.
        Guidelines for the Management of Non Transfusion Dependent Thalassaemia (NTDT). Nicosia (Cyprus).
        Thalassaemia International Federation. 2013;
        • Sirachainan N.
        • Thongsad J.
        • Pakakasama S.
        • et al.
        Normalized coagulation markers and anticoagulation proteins in children with severe β-thalassemia disease after stem cell transplantation.
        Thromb Res. 2012; 129: 765-770
        • Klaihmon P.
        • Vimonpatranon S.
        • Noulsri E.
        • et al.
        Normalized levels of red blood cells expressing phosphatidylserine, their microparticles, and activated platelets in young patients with β-thalassemia following bone marrow transplantation.
        Ann Hematol. 2017; 96: 1741-1747
        • Shet A.S.
        • Wun T.
        How I diagnose and treat venous thromboembolism in sickle cell disease.
        Blood J Am Soc Hematol. 2018; 132: 1761-1769
        • Apostolou C.
        • Klonizakis P.
        • Mainou M.
        • et al.
        Rivaroxaban use in patients with hemoglobinopathies.
        Hemoglobin. 2017; 41: 223-224
        • Singer S.T.
        • Vichinsky E.P.
        • Larkin S.
        • et al.
        Hydroxycarbamide-induced changes in E/beta thalassemia red blood cells.
        Am J Hematol. 2008; 83: 842-845
        • Ataga K.I.
        • Cappellini M.D.
        • Rachmilewitz E.A.
        Beta-thalassaemia and sickle cell anaemia as paradigms of hypercoagulability.
        Br J Haematol. 2007; 139: 3-13
        • Kanavaki A.
        • Spengos K.
        • Moraki M.
        • et al.
        Serum levels of S100b and NSE proteins in patients with non-transfusion-dependent thalassemia as biomarkers of brain ischemia and cerebral vasculopathy.
        Int J Mol Sci. 2017; 18: 2724
        • Taher A.T.
        • Cappellini M.D.
        • Musallam K.M.
        Development of a thalassemia-related thrombosis risk scoring system.
        Am J Hematol. 2019; 94: E207-E209