Advertisement
Review Article| Volume 37, ISSUE 2, P301-312, April 2023

Fetal Hemoglobin Regulation in Beta-Thalassemia

  • Henry Y. Lu
    Affiliations
    Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

    Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA

    Karp Family Research Laboratories, Boston Children’s Hospital, 1 Blackfan Street, Boston, MA 02115, USA
    Search for articles by this author
  • Stuart H. Orkin
    Affiliations
    Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

    Karp Family Research Laboratories, Boston Children’s Hospital, 1 Blackfan Street, Boston, MA 02115, USA

    Howard Hughes Medical Institute, Chevy Chase, MD, USA

    Harvard Stem Cell Institute, Cambridge, MA, USA
    Search for articles by this author
  • Vijay G. Sankaran
    Correspondence
    Corresponding author. Karp Family Research Laboratories, Boston Children’s Hospital, 1 Blackfan Street, Boston, MA 02115.
    Affiliations
    Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

    Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA

    Karp Family Research Laboratories, Boston Children’s Hospital, 1 Blackfan Street, Boston, MA 02115, USA

    Harvard Stem Cell Institute, Cambridge, MA, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Hematology/Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Modell B.
        • Darlison M.
        Global epidemiology of haemoglobin disorders and derived service indicators.
        Bull World Health Organ. 2008; 86: 480-487
        • Williams T.N.
        • Weatherall D.J.
        World distribution, population genetics, and health burden of the hemoglobinopathies.
        Cold Spring Harb Perspect Med. 2012; 2: a011692
        • Sankaran V.G.
        • Nathan D.G.
        Thalassemia: an overview of 50 years of clinical research.
        Hematol Oncol Clin North Am. 2010; 24: 1005-1020
        • Taher A.T.
        • Musallam K.M.
        • Cappellini M.D.
        beta-Thalassemias.
        N Engl J Med. 2021; 384: 727-743
        • Orkin S.H.
        MOLECULAR MEDICINE: Found in Translation.
        Med (N Y). 2021; 2: 122-136
        • Sankaran V.G.
        • Orkin S.H.
        The switch from fetal to adult hemoglobin.
        Cold Spring Harb Perspect Med. 2013; 3: a011643
        • Vinjamur D.S.
        • Bauer D.E.
        • Orkin S.H.
        Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies.
        Br J Haematol. 2018; 180: 630-643
        • Kato G.J.
        • Piel F.B.
        • Reid C.D.
        • et al.
        Sickle cell disease.
        Nat Rev Dis Primers. 2018; 4: 18010
        • Fessas P.
        Inclusions of hemoglobin erythroblasts and erythrocytes of thalassemia.
        Blood. 1963; 21: 21-32
        • Fessas P.
        • Loukopoulos D.
        • Thorell B.
        Absorption spectra of inclusion bodies in beta-thalassemia.
        Blood. 1965; 25: 105-109
        • Watson J.
        The significance of the paucity of sickle cells in newborn Negro infants.
        Am J Med Sci. 1948; 215: 419-423
        • Serjeant G.R.
        • Serjeant B.E.
        • Mason K.
        Heterocellular hereditary persistence of fetal haemoglobin and homozygous sickle-cell disease.
        Lancet. 9 1977; 1: 795-796
        • Premawardhena A.
        • Fisher C.A.
        • Olivieri N.F.
        • et al.
        Haemoglobin E beta thalassaemia in Sri Lanka.
        Lancet. 2005; 366: 1467-1470
        • Nuinoon M.
        • Makarasara W.
        • Mushiroda T.
        • et al.
        A genome-wide association identified the common genetic variants influence disease severity in beta0-thalassemia/hemoglobin E.
        Hum Genet. 2010; 127: 303-314
        • Galanello R.
        • Sanna S.
        • Perseu L.
        • et al.
        Amelioration of Sardinian beta0 thalassemia by genetic modifiers.
        Blood. 2009; 114: 3935-3937
        • Uda M.
        • Galanello R.
        • Sanna S.
        • et al.
        Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia.
        Proc Natl Acad Sci U S A. 2008; 105: 1620-1625
        • Musallam K.M.
        • Sankaran V.G.
        • Cappellini M.D.
        • et al.
        Fetal hemoglobin levels and morbidity in untransfused patients with beta-thalassemia intermedia.
        Blood. 2012; 119: 364-367
        • Platt O.S.
        • Thorington B.D.
        • Brambilla D.J.
        • et al.
        Pain in sickle cell disease. Rates and risk factors.
        N Engl J Med. 1991; 325: 11-16
        • Platt O.S.
        • Brambilla D.J.
        • Rosse W.F.
        • et al.
        Mortality in sickle cell disease. Life expectancy and risk factors for early death.
        N Engl J Med. 1994; 330: 1639-1644
        • Castro O.
        • Brambilla D.J.
        • Thorington B.
        • et al.
        The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease.
        Blood. 1994; 84: 643-649
        • van der Ploeg L.H.
        • Flavell R.A.
        DNA methylation in the human gamma delta beta-globin locus in erythroid and nonerythroid tissues.
        Cell. 1980; 19: 947-958
        • Ley T.J.
        • DeSimone J.
        • Anagnou N.P.
        • et al.
        5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia.
        N Engl J Med. 1982; 307: 1469-1475
        • Ley T.J.
        • DeSimone J.
        • Noguchi C.T.
        • et al.
        5-Azacytidine increases gamma-globin synthesis and reduces the proportion of dense cells in patients with sickle cell anemia.
        Blood. 1983; 62: 370-380
        • Musallam K.M.
        • Taher A.T.
        • Cappellini M.D.
        • et al.
        Clinical experience with fetal hemoglobin induction therapy in patients with beta-thalassemia.
        Blood. 2013; 121 ([quiz: 2372]): 2199-2212
        • Letvin N.L.
        • Linch D.C.
        • Beardsley G.P.
        • et al.
        Augmentation of fetal-hemoglobin production in anemic monkeys by hydroxyurea.
        N Engl J Med. 1984; 310: 869-873
        • Platt O.S.
        • Orkin S.H.
        • Dover G.
        • et al.
        Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia.
        J Clin Invest. 1984; 74: 652-656
        • Charache S.
        • Terrin M.L.
        • Moore R.D.
        • et al.
        Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia.
        N Engl J Med. 1995; 332: 1317-1322
        • Perrine S.P.
        • Greene M.F.
        • Faller D.V.
        Delay in the fetal globin switch in infants of diabetic mothers.
        N Engl J Med. 1985; 312: 334-338
        • Bard H.
        • Prosmanne J.
        Relative rates of fetal hemoglobin and adult hemoglobin synthesis in cord blood of infants of insulin-dependent diabetic mothers.
        Pediatrics. 1985; 75: 1143-1147
        • Perrine S.P.
        • Ginder G.D.
        • Faller D.V.
        • et al.
        A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders.
        N Engl J Med. 1993; 328: 81-86
        • Sher G.D.
        • Ginder G.D.
        • Little J.
        • et al.
        Extended therapy with intravenous arginine butyrate in patients with beta-hemoglobinopathies.
        N Engl J Med. 1995; 332: 1606-1610
        • Fathallah H.
        • Weinberg R.S.
        • Galperin Y.
        • et al.
        Role of epigenetic modifications in normal globin gene regulation and butyrate-mediated induction of fetal hemoglobin.
        Blood. 2007; 110: 3391-3397
        • Bradner J.E.
        • Mak R.
        • Tanguturi S.K.
        • et al.
        Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease.
        Proc Natl Acad Sci U S A. 2010; 107: 12617-12622
        • Mettananda S.
        • Yasara N.
        • Fisher C.A.
        • et al.
        Synergistic silencing of alpha-globin and induction of gamma-globin by histone deacetylase inhibitor, vorinostat as a potential therapy for beta-thalassaemia.
        Sci Rep. 2019; 9: 11649
        • Langer A.L.
        • Esrick E.B.
        beta-Thalassemia: evolving treatment options beyond transfusion and iron chelation.
        Hematol Am Soc Hematol Educ Program. 2021; 2021: 600-606
        • Menzel S.
        • Garner C.
        • Gut I.
        • et al.
        A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15.
        Nat Genet. 2007; 39: 1197-1199
        • Thein S.L.
        • Menzel S.
        • Peng X.
        • et al.
        Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults.
        Proc Natl Acad Sci U S A. 2007; 104: 11346-11351
        • Lettre G.
        • Sankaran V.G.
        • Bezerra M.A.
        • et al.
        DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease.
        Proc Natl Acad Sci U S A. 2008; 105: 11869-11874
        • Galarneau G.
        • Palmer C.D.
        • Sankaran V.G.
        • et al.
        Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation.
        Nat Genet. 2010; 42: 1049-1051
        • Sankaran V.G.
        • Menne T.F.
        • Xu J.
        • et al.
        Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A.
        Science. 2008; 322: 1839-1842
        • Basak A.
        • Munschauer M.
        • Lareau C.A.
        • et al.
        Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation.
        Nat Genet. 2020; 52: 138-145
        • Sankaran V.G.
        • Xu J.
        • Ragoczy T.
        • et al.
        Developmental and species-divergent globin switching are driven by BCL11A.
        Nature. 2009; 460: 1093-1097
        • Bauer D.E.
        • Kamran S.C.
        • Lessard S.
        • et al.
        An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level.
        Science. 2013; 342: 253-257
        • Canver M.C.
        • Smith E.C.
        • Sher F.
        • et al.
        BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis.
        Nature. 2015; 527: 192-197
        • Basak A.
        • Hancarova M.
        • Ulirsch J.C.
        • et al.
        BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations.
        J Clin Invest. 2015; 125: 2363-2368
        • Dias C.
        • Estruch S.B.
        • Graham S.A.
        • et al.
        BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription.
        Am J Hum Genet. 2016; 99: 253-274
        • Shen Y.
        • Li R.
        • Teichert K.
        • et al.
        Pathogenic BCL11A variants provide insights into the mechanisms of human fetal hemoglobin silencing.
        Plos Genet. 2021; 17: e1009835
        • Xu J.
        • Peng C.
        • Sankaran V.G.
        • et al.
        Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing.
        Science. 2011; 334: 993-996
        • Frangoul H.
        • Altshuler D.
        • Cappellini M.D.
        • et al.
        CRISPR-Cas9 Gene Editing for Sickle Cell Disease and beta-Thalassemia.
        N Engl J Med. 21 2021; 384: 252-260
        • Esrick E.B.
        • Lehmann L.E.
        • Biffi A.
        • et al.
        Posttranscriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease.
        N Engl J Med. 2021; 384: 205-215
        • Fu B.
        • Liao J.
        • Chen S.
        • et al.
        CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric beta(0)/beta(0) transfusion-dependent beta-thalassemia.
        Nat Med. 2022; 28: 1573-1580
        • Masuda T.
        • Wang X.
        • Maeda M.
        • et al.
        Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin.
        Science. 2016; 351: 285-289
        • Shen Y.
        • Verboon J.M.
        • Zhang Y.
        • et al.
        A unified model of human hemoglobin switching through single-cell genome editing.
        Nat Commun. 2021; 12: 4991
        • Yang Y.
        • Ren R.
        • Ly L.C.
        • et al.
        Structural basis for human ZBTB7A action at the fetal globin promoter.
        Cell Rep. 2021; 36: 109759
        • Martyn G.E.
        • Wienert B.
        • Yang L.
        • et al.
        Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding.
        Nat Genet. 2018; 50: 498-503
        • Ohishi A.
        • Masunaga Y.
        • Iijima S.
        • et al.
        De novo ZBTB7A variant in a patient with macrocephaly, intellectual disability, and sleep apnea: implications for the phenotypic development in 19p13.3 microdeletions.
        J Hum Genet. 2020; 65: 181-186
        • von der Lippe C.
        • Tveten K.
        • Prescott T.E.
        • et al.
        Heterozygous variants in ZBTB7A cause a neurodevelopmental disorder associated with symptomatic overgrowth of pharyngeal lymphoid tissue, macrocephaly, and elevated fetal hemoglobin.
        Am J Med Genet A. 2022; 188: 272-282
        • Funnell A.P.
        • Prontera P.
        • Ottaviani V.
        • et al.
        2p15-p16.1 microdeletions encompassing and proximal to BCL11A are associated with elevated HbF in addition to neurologic impairment.
        Blood. 2015; 126: 89-93
        • Yoshida M.
        • Nakashima M.
        • Okanishi T.
        • et al.
        Identification of novel BCL11A variants in patients with epileptic encephalopathy: Expanding the phenotypic spectrum.
        Clin Genet. 2018; 93: 368-373
        • Wessels M.W.
        • Cnossen M.H.
        • van Dijk T.B.
        • et al.
        Molecular analysis of the erythroid phenotype of a patient with BCL11A haploinsufficiency.
        Blood Adv. 2021; 5: 2339-2349
        • Liu N.
        • Hargreaves V.V.
        • Zhu Q.
        • et al.
        Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch.
        Cell. 2018; 173: 430-442 e17
        • Xu J.
        • Sankaran V.G.
        • Ni M.
        • et al.
        Transcriptional silencing of {gamma}-globin by BCL11A involves long-range interactions and cooperation with SOX6.
        Genes Dev. 2010; 24: 783-798
        • Xu J.
        • Bauer D.E.
        • Kerenyi M.A.
        • et al.
        Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A.
        Proc Natl Acad Sci U S A. 2013; 110: 6518-6523
        • Kurita R.
        • Suda N.
        • Sudo K.
        • et al.
        Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.
        PLoS One. 2013; 8: e59890
        • Gebauer F.
        • Schwarzl T.
        • Valcarcel J.
        • et al.
        RNA-binding proteins in human genetic disease.
        Nat Rev Genet. 2021; 22: 185-198
        • Lee Y.T.
        • de Vasconcellos J.F.
        • Yuan J.
        • et al.
        LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo.
        Blood. 2013; 122: 1034-1041
        • de Vasconcellos J.F.
        • Tumburu L.
        • Byrnes C.
        • et al.
        IGF2BP1 overexpression causes fetal-like hemoglobin expression patterns in cultured human adult erythroblasts.
        Proc Natl Acad Sci U S A. 2017; 114: E5664-E5672https://doi.org/10.1073/pnas.160955211
        • Qin K.
        • Huang P.
        • Feng R.
        • et al.
        Dual function NFI factors control fetal hemoglobin silencing in adult erythroid cells.
        Nat Genet. 2022; 54: 874-884
        • Huang P.
        • Peslak S.A.
        • Ren R.
        • et al.
        HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription.
        Nat Genet. 2022; 54: 1417-1426
        • Sher F.
        • Hossain M.
        • Seruggia D.
        • et al.
        Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis.
        Nat Genet. 2019; 51: 1149-1159
        • Lan X.
        • Ren R.
        • Feng R.
        • et al.
        ZNF410 Uniquely Activates the NuRD Component CHD4 to Silence Fetal Hemoglobin Expression.
        Mol Cell. 2021; 81: 239-254 e8
        • Vinjamur D.S.
        • Yao Q.
        • Cole M.A.
        • et al.
        ZNF410 represses fetal globin by singular control of CHD4.
        Nat Genet. 2021; 53: 719-728
        • Liu B.
        • Brendel C.
        • Vinjamur D.S.
        • et al.
        Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat beta-hemoglobinopathies.
        Mol Ther. 2022; 30: 2693-2708