Advertisement
Review Article| Volume 37, ISSUE 2, P273-299, April 2023

Molecular Basis and Genetic Modifiers of Thalassemia

  • Nicolò Tesio
    Affiliations
    Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Turin, Italy
    Search for articles by this author
  • Daniel E. Bauer
    Correspondence
    Corresponding author. Division of Hematology/Oncology, Boston Children's Hospital, Karp RB 8215, 300 Longwood Avenue, Boston, MA 02115.
    Affiliations
    Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA

    Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

    Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Hematology/Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kattamis A.
        • Kwiatkowski J.L.
        • Aydinok Y.
        Thalassaemia.
        Lancet. 2022; 399: 2310-2324
        • Modell B.
        • Darlison M.
        Global epidemiology of haemoglobin disorders and derived service indicators.
        Bull World Health Organ. 2008; 86: 480-487
        • Weatherall D.J.
        Genetic variation and susceptibility to infection: the red cell and malaria.
        Br J Haematol. 2008; 141: 276-286
        • Weatherall D.J.
        The evolving spectrum of the epidemiology of thalassemia.
        Hematol Oncol Clin North Am. 2018; 32: 165-175
        • Kattamis A.
        • Forni G.L.
        • Aydinok Y.
        • et al.
        Changing patterns in the epidemiology of β-thalassemia.
        Eur J Haematol. 2020; 105: 692-703
        • Rabbitts T.H.
        Bacterial cloning of plasmids carrying copies of rabbit globin messenger RNA.
        Nature. 1976; 260: 221-225
        • Muirhead H.
        • Cox J.M.
        • Mazzarella L.
        • et al.
        Structure and function of haemoglobin: III. A three-dimensional fourier synthesis of human deoxyhemoglobin at 5·5 Å resolution.
        J Mol Biol. 1967; 28: 117-150
        • Pauling L.
        • Itano H.A.
        Sickle cell anemia, a molecular disease.
        Science. 1949; 109: 443
        • Ingram V.M.
        Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin.
        Nature. 1957; 180: 326-328
        • Myers R.M.
        • Tilly K.
        • Maniatis T.
        Fine structure genetic analysis of a beta-globin promoter.
        Science. 1986; 232: 613-618
        • Grosveld F.
        • van Assendelft G.B.
        • Greaves D.R.
        • et al.
        Position-independent, high-level expression of the human beta-globin gene in transgenic mice.
        Cell. 1987; 51: 975-985
        • Efstratiadis A.
        • Posakony J.W.
        • Maniatis T.
        • et al.
        The structure and evolution of the human beta-globin gene family.
        Cell. 1980; 21: 653-668
        • Higgs D.R.
        • Vickers M.A.
        • Wilkie A.O.
        • et al.
        A review of the molecular genetics of the human alpha-globin gene cluster.
        Blood. 1989; 73: 1081-1104
        • Goh S.H.
        • Lee Y.T.
        • Bhanu N.V.
        • et al.
        A newly discovered human alpha-globin gene.
        Blood. 2005; 106: 1466-1472
        • Hughes J.R.
        • Cheng J.F.
        • Ventress N.
        • et al.
        Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences.
        Proc Natl Acad Sci U S A. 2005; 102: 9830-9835
        • Mettananda S.
        • Gibbons R.J.
        • Higgs D.R.
        Understanding α-globin gene regulation and implications for the treatment of β-thalassemia.
        Ann N Y Acad Sci. 2016; 1368: 16-24
        • Tuan D.
        • London I.M.
        Mapping of DNase I-hypersensitive sites in the upstream DNA of human embryonic epsilon-globin gene in K562 leukemia cells.
        Proc Natl Acad Sci U S A. 1984; 81: 2718-2722
        • Forrester W.C.
        • Takegawa S.
        • Papayannopoulou T.
        • et al.
        Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids.
        Nucleic Acids Res. 1987; 15: 10159-10177
        • Wijgerde M.
        • Grosveld F.
        • Fraser P.
        Transcription complex stability and chromatin dynamics in vivo.
        Nature. 1995; 377: 209-213
        • Bulger M.
        • Groudine M.
        Looping versus linking: toward a model for long-distance gene activation.
        Genes Dev. 1999; 13: 2465-2477
        • De Gobbi M.
        • Anguita E.
        • Hughes J.
        • et al.
        Tissue-specific histone modification and transcription factor binding in alpha globin gene expression.
        Blood. 2007; 110: 4503-4510
        • Vernimmen D.
        • Marques-Kranc F.
        • Sharpe J.A.
        • et al.
        Chromosome looping at the human alpha-globin locus is mediated via the major upstream regulatory element (HS -40).
        Blood. 2009; 114: 4253-4260
        • Vernimmen D.
        • Lynch M.D.
        • De Gobbi M.
        • et al.
        Polycomb eviction as a new distant enhancer function.
        Genes Dev. 2011; 25: 1583-1588
        • Deng W.
        • Rupon J.W.
        • Krivega I.
        • et al.
        Reactivation of developmentally silenced globin genes by forced chromatin looping.
        Cell. 2014; 158: 849-860
        • Lee W.S.
        • McColl B.
        • Maksimovic J.
        • et al.
        Epigenetic interplay at the β-globin locus.
        Biochim Biophys Acta Gene Regul Mech. 2017; 1860: 393-404
        • Stamatoyannopoulos G.
        Control of globin gene expression during development and erythroid differentiation.
        Exp Hematol. 2005; 33: 259-271
        • Vinjamur D.S.
        • Bauer D.E.
        • Orkin S.H.
        Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies.
        Br J Haematol. 2018; 180: 630-643
        • Menzel S.
        • Garner C.
        • Gut I.
        • et al.
        A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15.
        Nat Genet. 2007; 39: 1197-1199
        • Uda M.
        • Galanello R.
        • Sanna S.
        • et al.
        Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia.
        Proc Natl Acad Sci U S A. 2008; 105: 1620-1625
        • Bauer D.E.
        • Kamran S.C.
        • Orkin S.H.
        Reawakening fetal hemoglobin: prospects for new therapies for the β-globin disorders.
        Blood. 2012; 120: 2945-2953
        • Xu J.
        • Bauer D.E.
        • Kerenyi M.A.
        • et al.
        Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A.
        Proc Natl Acad Sci U S A. 2013; 110: 6518-6523
        • Sankaran V.G.
        • Menne T.F.
        • Xu J.
        • et al.
        Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A.
        Science. 2008; 322: 1839-1842
        • Liu N.
        • Hargreaves V.V.
        • Zhu Q.
        • et al.
        Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch.
        Cell. 2018; 173: 430-442.e17
        • Martyn G.E.
        • Wienert B.
        • Yang L.
        • et al.
        Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding.
        Nat Genet. 2018; 50: 498-503
        • Liu N.
        • Xu S.
        • Yao Q.
        • et al.
        Transcription factor competition at the γ-globin promoters controls hemoglobin switching.
        Nat Genet. 2021; 53: 511-520
        • Bauer D.E.
        • Kamran S.C.
        • Lessard S.
        • et al.
        An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level.
        Science. 2013; 342: 253-257
        • Basak A.
        • Hancarova M.
        • Ulirsch J.C.
        • et al.
        BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations.
        J Clin Invest. 2015; 125: 2363-2368
        • Huang P.
        • Peslak S.A.
        • Ren R.
        • et al.
        HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription.
        Nat Genet. 2022; 54: 1417-1426
        • Doerfler P.A.
        • Feng R.
        • Li Y.
        • et al.
        Activation of γ-globin gene expression by GATA1 and NF-Y in hereditary persistence of fetal hemoglobin.
        Nat Genet. 2021; 53: 1177-1186
        • Masuda T.
        • Wang X.
        • Maeda M.
        • et al.
        Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin.
        Science. 2016; 351: 285-289
        • Harju-Baker S.
        • Costa F.C.
        • Fedosyuk H.
        • et al.
        Silencing of Agamma-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the -566 GATA site.
        Mol Cell Biol. 2008; 28: 3101-3113
        • Gnanapragasam M.N.
        • Scarsdale J.N.
        • Amaya M.L.
        • et al.
        p66Alpha-MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex.
        Proc Natl Acad Sci U S A. 2011; 108: 7487-7492
        • Sher F.
        • Hossain M.
        • Seruggia D.
        • et al.
        Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis.
        Nat Genet. 2019; 51: 1149-1159
        • Vinjamur D.S.
        • Yao Q.
        • Cole M.A.
        • et al.
        ZNF410 represses fetal globin by singular control of CHD4.
        Nat Genet. 2021; 53: 719-728
        • Lan X.
        • Ren R.
        • Feng R.
        • et al.
        ZNF410 uniquely activates the NuRD component CHD4 to silence fetal hemoglobin expression.
        Mol Cell. 2021; 81: 239-254.e8
        • Zhou D.
        • Liu K.
        • Sun C.W.
        • et al.
        KLF1 regulates BCL11A expression and γ- to β-globin gene switching.
        Nat Genet. 2010; 42: 742-744
        • Borg J.
        • Papadopoulos P.
        • Georgitsi M.
        • et al.
        Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin.
        Nat Genet. 2010; 42: 801-805
        • Liu D.
        • Zhang X.
        • Yu L.
        • et al.
        KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of β-thalassemia.
        Blood. 2014; 124: 803-811
        • Perkins A.
        • Xu X.
        • Higgs D.R.
        • et al.
        Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants.
        Blood. 2016; 127: 1856-1862
        • Menzel S.
        • Jiang J.
        • Silver N.
        • et al.
        The HBS1L-MYB intergenic region on chromosome 6q23.3 influences erythrocyte, platelet, and monocyte counts in humans.
        Blood. 2007; 110: 3624-3626
        • Thein S.L.
        • Menzel S.
        • Peng X.
        • et al.
        Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults.
        Proc Natl Acad Sci U S A. 2007; 104: 11346-11351
        • Sankaran V.G.
        • Menne T.F.
        • Šćepanović D.
        • et al.
        MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13.
        Proc Natl Acad Sci U S A. 2011; 108: 1519-1524
        • Qin K.
        • Huang P.
        • Feng R.
        • et al.
        Dual function NFI factors control fetal hemoglobin silencing in adult erythroid cells.
        Nat Genet. 2022; 54: 874-884
        • Piel F.B.
        • Weatherall D.J.
        The α-thalassemias.
        N Engl J Med. 2014; 371: 1908-1916
        • Higgs D.R.
        The molecular basis of α-thalassemia.
        Cold Spring Harb Perspect Med. 2013; 3: a011718
        • Farashi S.
        • Harteveld C.L.
        Molecular basis of α-thalassemia.
        Blood Cells Mol Dis. 2018; 70: 43-53
        • Higgs D.R.
        • Wood W.G.
        Long-range regulation of alpha globin gene expression during erythropoiesis.
        Curr Opin Hematol. 2008; 15: 176-183
        • Coelho A.
        • Picanço I.
        • Seuanes F.
        • et al.
        Novel large deletions in the human α-globin gene cluster: clarifying the HS-40 long-range regulatory role in the native chromosome environment.
        Blood Cells Mol Dis. 2010; 45: 147-153
        • Sollaino M.C.
        • Paglietti M.E.
        • Loi D.
        • et al.
        Homozygous deletion of the major alpha-globin regulatory element (MCS-R2) responsible for a severe case of hemoglobin H disease.
        Blood. 2010; 116: 2193-2194
        • Wu M.Y.
        • He Y.
        • Yan J.M.
        • et al.
        A novel selective deletion of the major α-globin regulatory element (MCS-R2) causing α-thalassaemia.
        Br J Haematol. 2017; 176: 984-986
        • Kalle Kwaifa I.
        • Lai M.I.
        • Md Noor S.
        Non-deletional alpha thalassaemia: a review.
        Orphanet J Rare Dis. 2020; 15: 166
        • Wajcman H.
        • Traeger-Synodinos J.
        • Papassotiriou I.
        • et al.
        Unstable and thalassemic alpha chain hemoglobin variants: a cause of Hb H disease and thalassemia intermedia.
        Hemoglobin. 2008; 32: 327-349
        • Clegg J.B.
        • Weatherall D.J.
        Hemoglobin constant spring, and unusual alpha-chain variant involved in the etiology of hemoglobin H disease.
        Ann N Y Acad Sci. 1974; 232: 168-178
        • Schrier S.L.
        • Bunyaratvej A.
        • Khuhapinant A.
        • et al.
        The unusual pathobiology of hemoglobin constant spring red blood cells.
        Blood. 1997; 89: 1762-1769
        • Singer S.T.
        • Kim H.Y.
        • Olivieri N.F.
        • et al.
        Hemoglobin H-constant spring in North America: an alpha thalassemia with frequent complications.
        Am J Hematol. 2009; 84: 759-761
        • Gibbons R.
        Alpha thalassaemia-mental retardation, X linked.
        Orphanet J Rare Dis. 2006; 1: 15
        • Clynes D.
        • Higgs D.R.
        • Gibbons R.J.
        The chromatin remodeller ATRX: a repeat offender in human disease.
        Trends Biochem Sci. 2013; 38: 461-466
        • Truch J.
        • Downes D.J.
        • Scott C.
        • et al.
        The chromatin remodeller ATRX facilitates diverse nuclear processes, in a stochastic manner, in both heterochromatin and euchromatin.
        Nat Commun. 2022; 13: 3485
        • Gibbons R.J.
        • Higgs D.R.
        The alpha-thalassemia/mental retardation syndromes.
        Medicine. 1996; 75: 45-52
        • Harteveld C.L.
        • Kriek M.
        • Bijlsma E.K.
        • et al.
        Refinement of the genetic cause of ATR-16.
        Hum Genet. 2007; 122: 283-292
        • Lorey F.
        • Charoenkwan P.
        • Witkowska H.E.
        • et al.
        hydrops foetalis syndrome: a case report and review of literature.
        Br J Haematol. 2001; 115: 72-78
        • Lal A.
        • Goldrich M.L.
        • Haines D.A.
        • et al.
        Heterogeneity of hemoglobin H disease in childhood.
        N Engl J Med. 2011; 364: 710-718
        • Songdej D.
        • Babbs C.
        • Higgs D.R.
        • BHFS International Consortium
        An international registry of survivors with Hb Bart’s hydrops fetalis syndrome.
        Blood. 2017; 129: 1251-1259
        • MacKenzie T.C.
        • Amid A.
        • Angastiniotis M.
        • et al.
        Consensus statement for the perinatal management of patients with α thalassemia major.
        Blood Adv. 2021; 5: 5636-5639
        • King A.J.
        • Higgs D.R.
        Potential new approaches to the management of the Hb Bart’s hydrops fetalis syndrome: the most severe form of α-thalassemia.
        Hematol Am Soc Hematol Educ Program. 2018; 2018: 353-360
        • Russell J.E.
        • Liebhaber S.A.
        Reversal of lethal alpha- and beta-thalassemias in mice by expression of human embryonic globins.
        Blood. 1998; 92: 3057-3063
        • King A.J.
        • Songdej D.
        • Downes D.J.
        • et al.
        Reactivation of a developmentally silenced embryonic globin gene.
        Nat Commun. 2021; 12: 4439
        • Sancar G.B.
        • Tatsis B.
        • Cedeno M.M.
        • et al.
        Proportion of hemoglobin G Philadelphia (alpha 268 Asn leads to Lys beta 2) in heterozygotes is determined by alpha-globin gene deletions.
        Proc Natl Acad Sci U S A. 1980; 77: 6874-6878
        • Steensma D.P.
        • Gibbons R.J.
        • Higgs D.R.
        Acquired alpha-thalassemia in association with myelodysplastic syndrome and other hematologic malignancies.
        Blood. 2005; 105: 443-452
        • Taher A.T.
        • Musallam K.M.
        • Cappellini M.D.
        β-thalassemias.
        N Engl J Med. 2021; 384: 727-743
        • Thein S.L.
        Molecular basis of β thalassemia and potential therapeutic targets.
        Blood Cells Mol Dis. 2018; 70: 54-65
        • Thein S.L.
        The molecular basis of β-thalassemia.
        Cold Spring Harb Perspect Med. 2013; 3: a011700
        • Huisman T.H.
        Levels of Hb A2 in heterozygotes and homozygotes for beta-thalassemia mutations: influence of mutations in the CACCC and ATAAA motifs of the beta-globin gene promoter.
        Acta Haematol. 1997; 98: 187-194
        • Topfer S.K.
        • Feng R.
        • Huang P.
        • et al.
        Disrupting the adult globin promoter alleviates promoter competition and reactivates fetal globin gene expression.
        Blood. 2022; 139: 2107-2118
        • Weatherall D.J.
        Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias.
        Nat Rev Genet. 2001; 2: 245-255
        • Orkin S.H.
        • Kazazian Jr., H.H.
        • Antonarakis S.E.
        • et al.
        Abnormal RNA processing due to the exon mutation of beta E-globin gene.
        Nature. 1982; 300: 768-769
        • Fucharoen S.
        • Weatherall D.J.
        The hemoglobin E thalassemias.
        Cold Spring Harb Perspect Med. 2012; 2: a011734
        • Thein S.L.
        • Old J.M.
        • Wainscoat J.S.
        • et al.
        Population and genetic studies suggest a single origin for the Indian deletion beta thalassaemia.
        Br J Haematol. 1984; 57: 271-278
        • Orkin S.H.
        • Goff S.C.
        • Nathan D.G.
        Heterogeneity of DNA deletion in gamma delta beta-thalassemia.
        J Clin Invest. 1981; 67: 878-884
        • Thein S.L.
        • Wood W.G.
        The molecular basis of β thalassemia, δβ thalassemia, and hereditary persistence of fetal hemoglobin.
        in: Steinberg M.H. Forget B.G. Higgs D.R. Weatherall D.R. Disorders of hemoglobin: genetics, pathophysiology, and clinical management. Cambridge University Press, Cambridge, UK2009: 323-356
        • Forget B.G.
        Molecular basis of hereditary persistence of fetal hemoglobin.
        Ann N Y Acad Sci. 1998; 850: 38-44
        • Baglioni C.
        The fusion of two peptide chains in hemoglobin Lepore and its interpretation as a genetic deletion.
        Proc Natl Acad Sci U S A. 1962; 48: 1880-1886
        • Efremov G.D.
        Hemoglobins Lepore and anti-Lepore.
        Hemoglobin. 1978; 2: 197-233
        • Thein S.L.
        • Hesketh C.
        • Taylor P.
        • et al.
        Molecular basis for dominantly inherited inclusion body beta-thalassemia.
        Proc Natl Acad Sci U S A. 1990; 87: 3924-3928
        • Thein S.L.
        Is it dominantly inherited beta thalassaemia or just a beta-chain variant that is highly unstable?.
        Br J Haematol. 1999; 107: 12-21
        • Viprakasit V.
        • Gibbons R.J.
        • Broughton B.C.
        • et al.
        Mutations in the general transcription factor TFIIH result in β-thalassaemia in individuals with trichothiodystrophy.
        Hum Mol Genet. 2001; 10: 2797-2802
        • Yu C.
        • Niakan K.K.
        • Matsushita M.
        • et al.
        X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction.
        Blood. 2002; 100: 2040-2045
        • Perseu L.
        • Satta S.
        • Moi P.
        • et al.
        KLF1 gene mutations cause borderline HbA(2).
        Blood. 2011; 118: 4454-4458
        • Achour A.
        • Koopmann T.
        • Castel R.
        • et al.
        A new gene associated with a β-thalassemia phenotype: the observation of variants in SUPT5H.
        Blood. 2020; 136: 1789-1793
        • Badens C.
        • Mattei M.G.
        • Imbert A.M.
        • et al.
        A novel mechanism for thalassaemia intermedia.
        Lancet. 2002; 359: 132-133
        • Galanello R.
        • Perseu L.
        • Perra C.
        • et al.
        Somatic deletion of the normal beta-globin gene leading to thalassaemia intermedia in heterozygous beta-thalassaemic patients.
        Br J Haematol. 2004; 127: 604-606
        • Chang J.G.
        • Tsai W.C.
        • Chong I.W.
        • et al.
        {beta}-thalassemia major evolution from {beta}-thalassemia minor is associated with paternal uniparental isodisomy of chromosome 11p15.
        Haematologica. 2008; 93: 913-916
        • Brunner A.M.
        • Steensma D.P.
        Myelodysplastic syndrome associated acquired beta thalassemia: “BTMDS”.
        Am J Hematol. 2016; 91: E325-E327
        • Welbourn E.M.
        • Wilson M.T.
        • Yusof A.
        • et al.
        The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane.
        Free Radic Biol Med. 2017; 103: 95-106
        • Thein S.L.
        Pathophysiology of beta thalassemia–a guide to molecular therapies.
        Hematol Am Soc Hematol Educ Program. 2005; 2005: 31-37
        • Danjou F.
        • Anni F.
        • Galanello R.
        Beta-thalassemia: from genotype to phenotype.
        Haematologica. 2011; 96: 1573-1575
        • Thein S.L.
        Genetic association studies in β-hemoglobinopathies.
        Hematol Am Soc Hematol Educ Program. 2013; 2013: 354-361
        • Voon H.P.J.
        • Vadolas J.
        Controlling alpha-globin: a review of alpha-globin expression and its impact on beta-thalassemia.
        Haematologica. 2008; 93: 1868-1876
        • Mettananda S.
        • Gibbons R.J.
        • Higgs D.R.
        α-Globin as a molecular target in the treatment of β-thalassemia.
        Blood. 2015; 125: 3694-3701
        • Stoming T.A.
        • Stoming G.S.
        • Lanclos K.D.
        • et al.
        An A gamma type of nondeletional hereditary persistence of fetal hemoglobin with a T–--C mutation at position -175 to the cap site of the A gamma globin gene.
        Blood. 1989; 73: 329-333
        • Fischer K.D.
        • Nowock J.
        The T–--C substitution at -198 of the A gamma-globin gene associated with the British form of HPFH generates overlapping recognition sites for two DNA-binding proteins.
        Nucleic Acids Res. 1990; 18: 5685-5693
        • Wienert B.
        • Funnell A.P.W.
        • Norton L.J.
        • et al.
        Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin.
        Nat Commun. 2015; 6: 7085
        • Wienert B.
        • Martyn G.E.
        • Kurita R.
        • et al.
        KLF1 drives the expression of fetal hemoglobin in British HPFH.
        Blood. 2017; 130: 803-807
        • Martyn G.E.
        • Wienert B.
        • Kurita R.
        • et al.
        A natural regulatory mutation in the proximal promoter elevates fetal globin expression by creating a de novo GATA1 site.
        Blood. 2019; 133: 852-856
        • Ravi N.S.
        • Wienert B.
        • Wyman S.K.
        • et al.
        Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin.
        Elife. 2022; 11: e65421
        • Huisman T.H.
        • Wrightstone R.N.
        • Wilson J.B.
        • et al.
        Hemoglobin Kenya, the product of fusion of amd polypeptide chains.
        Arch Biochem Biophys. 1972; 153: 850-853
        • Kendall A.G.
        • Ojwang P.J.
        • Schroeder W.A.
        • et al.
        Hemoglobin Kenya, the product of a gamma-beta fusion gene: studies of the family.
        Am J Hum Genet. 1973; 25: 548-563
        • Jiang Z.
        • Luo H.Y.
        • Huang S.
        • et al.
        The genetic basis of asymptomatic codon 8 frame-shift (HBB:c25_26delAA) β(0) -thalassaemia homozygotes.
        Br J Haematol. 2016; 172: 958-965
        • Origa R.
        • Galanello R.
        • Perseu L.
        • et al.
        Cholelithiasis in thalassemia major.
        Eur J Haematol. 2009; 82: 22-25
        • Melis M.A.
        • Cau M.
        • Deidda F.
        • et al.
        H63D mutation in the HFE gene increases iron overload in beta-thalassemia carriers.
        Haematologica. 2002; 87: 242-245
        • Sidore C.
        • Busonero F.
        • Maschio A.
        • et al.
        Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers.
        Nat Genet. 2015; 47: 1272-1281
        • Liu D.J.
        • Peloso G.M.
        • Yu H.
        • et al.
        Exome-wide association study of plasma lipids in >300,000 individuals.
        Nat Genet. 2017; 49: 1758-1766
        • Triantafyllou A.I.
        • Farmakis D.T.
        • Lampropoulos K.M.
        • et al.
        Impact of β-thalassemia trait carrier state on inflammatory status in patients with newly diagnosed hypertension.
        J Cardiovasc Med. 2019; 20: 284-289
        • Kato G.J.
        • Piel F.B.
        • Reid C.D.
        • et al.
        Sickle cell disease.
        Nat Rev Dis Primers. 2018; 4: 18010
        • Vichinsky E.P.
        Overview of compound sickle cell syndromes.
        (Available at:) (Accessed October 3, 2022)
        • Embury S.H.
        • Dozy A.M.
        • Miller J.
        • et al.
        Concurrent sickle-cell anemia and alpha-thalassemia: effect on severity of anemia.
        N Engl J Med. 1982; 306: 270-274
        • Billett H.H.
        • Nagel R.L.
        • Fabry M.E.
        Paradoxical increase of painful crises in sickle cell patients with alpha-thalassemia.
        Blood. 1995; 86: 4382
        • Fertrin K.Y.
        • Costa F.F.
        Genomic polymorphisms in sickle cell disease: implications for clinical diversity and treatment.
        Expert Rev Hematol. 2010; 3: 443-458
        • Sabath D.E.
        Molecular diagnosis of thalassemias and hemoglobinopathies: an ACLPS critical review.
        Am J Clin Pathol. 2017; 148: 6-15
        • Munkongdee T.
        • Chen P.
        • Winichagoon P.
        • et al.
        Update in laboratory diagnosis of thalassemia.
        Front Mol Biosci. 2020; 7: 74
        • Achour A.
        • Koopmann T.T.
        • Baas F.
        • et al.
        The evolving role of next-generation sequencing in screening and diagnosis of hemoglobinopathies.
        Front Physiol. 2021; 12: 686689
        • He J.
        • Song W.
        • Yang J.
        • et al.
        Next-generation sequencing improves thalassemia carrier screening among premarital adults in a high prevalence population: the Dai nationality.
        China Genet Med. 2017; 19: 1022-1031
        • Zhang H.
        • Li C.
        • Li J.
        • et al.
        Next-generation sequencing improves molecular epidemiological characterization of thalassemia in Chenzhou Region, P.R. China.
        J Clin Lab Anal. 2019; 33: e22845
      1. ACOG committee on obstetrics. ACOG practice bulletin No. 78: hemoglobinopathies in pregnancy.
        Obstet Gynecol. 2007; 109: 229-237
      2. Committee opinion No. 691: carrier screening for genetic conditions.
        Obstet Gynecol. 2017; 129: e41-e55
        • Mandrile G.
        • Barella S.
        • Giambona A.
        • et al.
        First and second level haemoglobinopathies diagnosis: best practices of the Italian Society of Thalassemia and Haemoglobinopathies (SITE).
        J Clin Med Res. 2022; 11: 5426
        • Yates A.M.
        Prenatal screening and testing for hemoglobinopathy.
        (Available at:) (Accessed October 3, 2022)
        • Scotchman E.
        • Shaw J.
        • Paternoster B.
        • et al.
        Non-invasive prenatal diagnosis and screening for monogenic disorders.
        Eur J Obstet Gynecol Reprod Biol. 2020; 253: 320-327
      3. Committee opinion No. 690: carrier screening in the age of genomic medicine.
        Obstet Gynecol. 2017; 129: e35-e40
        • Copelan E.A.
        Hematopoietic stem-cell transplantation.
        N Engl J Med. 2006; 354: 1813-1826
        • Gragert L.
        • Eapen M.
        • Williams E.
        • et al.
        HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry.
        N Engl J Med. 2014; 371: 339-348
        • Baronciani D.
        • Angelucci E.
        • Potschger U.
        • et al.
        Hemopoietic stem cell transplantation in thalassemia: a report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000-2010.
        Bone Marrow Transplant. 2016; 51: 536-541
        • Li C.
        • Mathews V.
        • Kim S.
        • et al.
        Related and unrelated donor transplantation for β-thalassemia major: results of an international survey.
        Blood Adv. 2019; 3: 2562-2570
        • Cavazzana M.
        • Bushman F.D.
        • Miccio A.
        • et al.
        Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges.
        Nat Rev Drug Discov. 2019; 18: 447-462
        • Ferrari G.
        • Thrasher A.J.
        • Aiuti A.
        Gene therapy using haematopoietic stem and progenitor cells.
        Nat Rev Genet. 2021; 22: 216-234
        • Rosanwo T.O.
        • Bauer D.E.
        Editing outside the body: Ex vivo gene-modification for β-hemoglobinopathy cellular therapy.
        Mol Ther. 2021; 29: 3163-3178
        • Center for Biologics Evaluation
        Research. ZYNTEGLO. U.S. Food and Drug Administration.
        (Available at:) (Accessed September 21, 2022)
        • Locatelli F.
        • Thompson A.A.
        • Kwiatkowski J.L.
        • et al.
        Betibeglogene Autotemcel gene therapy for Non-β0/β0 genotype β-thalassemia.
        N Engl J Med. 2022; 386: 415-427
        • Cavazzana M.
        • Antoniani C.
        • Miccio A.
        Gene therapy for β-hemoglobinopathies.
        Mol Ther. 2017; 25: 1142-1154
        • Leonard A.
        • Tisdale J.F.
        • Bonner M.
        Gene therapy for hemoglobinopathies: beta-thalassemia, sickle cell disease.
        Hematol Oncol Clin North Am. 2022; 36: 769-795
        • Naldini L.
        • Blömer U.
        • Gallay P.
        • et al.
        In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.
        Science. 1996; 272: 263-267
        • Thompson A.A.
        • Walters M.C.
        • Kwiatkowski J.
        • et al.
        Gene therapy in patients with transfusion-dependent β-thalassemia.
        N Engl J Med. 2018; 378: 1479-1493
        • Marktel S.
        • Scaramuzza S.
        • Cicalese M.P.
        • et al.
        Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia.
        Nat Med. 2019; 25: 234-241
        • Kanter J.
        • Walters M.C.
        • Krishnamurti L.
        • et al.
        Biologic and clinical efficacy of LentiGlobin for sickle cell disease.
        N Engl J Med. 2022; 386: 617-628
        • Esrick E.B.
        • Lehmann L.E.
        • Biffi A.
        • et al.
        Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease.
        N Engl J Med. 2021; 384: 205-215
        • Liu B.
        • Brendel C.
        • Vinjamur D.S.
        • et al.
        Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat β-hemoglobinopathies.
        Mol Ther. 2022; 30: 2693-2708
        • Musallam K.M.
        • Bou-Fakhredin R.
        • Cappellini M.D.
        • et al.
        2021 update on clinical trials in β-thalassemia.
        Am J Hematol. 2021; 96: 1518-1531
        • Brusson M.
        • Miccio A.
        Genome editing approaches to β-hemoglobinopathies.
        Prog Mol Biol Transl Sci. 2021; 182: 153-183
        • Anzalone A.V.
        • Koblan L.W.
        • Liu D.R.
        Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.
        Nat Biotechnol. 2020; 38: 824-844
        • Canver M.C.
        • Smith E.C.
        • Sher F.
        • et al.
        BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis.
        Nature. 2015; 527: 192-197
        • Chang K.H.
        • Smith S.E.
        • Sullivan T.
        • et al.
        Long-term engraftment and fetal globin induction upon BCL11A gene editing in bone-marrow-derived CD34+ hematopoietic stem and progenitor cells.
        Mol Ther Methods Clin Dev. 2017; 4: 137-148
        • Antoniani C.
        • Meneghini V.
        • Lattanzi A.
        • et al.
        Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus.
        Blood. 2018; 131: 1960-1973
        • Wu Y.
        • Zeng J.
        • Roscoe B.P.
        • et al.
        Highly efficient therapeutic gene editing of human hematopoietic stem cells.
        Nat Med. 2019; 25: 776-783
        • Métais J.Y.
        • Doerfler P.A.
        • Mayuranathan T.
        • et al.
        Genome editing of HBG1 and HBG2 to induce fetal hemoglobin.
        Blood Adv. 2019; 3: 3379-3392
        • Wang J.
        • Exline C.M.
        • DeClercq J.J.
        • et al.
        Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors.
        Nat Biotechnol. 2015; 33: 1256-1263
        • Cromer M.K.
        • Camarena J.
        • Martin R.M.
        • et al.
        Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells.
        Nat Med. 2021; 27: 677-687
        • Pavani G.
        • Fabiano A.
        • Laurent M.
        • et al.
        Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells.
        Blood Adv. 2021; 5: 1137-1153
        • Frangoul H.
        • Altshuler D.
        • Cappellini M.D.
        • et al.
        CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.
        N Engl J Med. 2021; 384: 252-260
        • Locatelli F.
        • Frangoul H.
        • Corbacioglu S.
        • et al.
        Efficacy and safety of a single dose of CTX011 for transfusion-dependent beta-thalassemia and severe sickle cell disease. In: European Hematology Association.
        (Available at:) (Accessed September 21, 2022)
        • Fu B.
        • Liao J.
        • Chen S.
        • et al.
        CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia.
        Nat Med. 2022; 28: 1573-1580
        • Porto E.M.
        • Komor A.C.
        • Slaymaker I.M.
        • et al.
        Base editing: advances and therapeutic opportunities.
        Nat Rev Drug Discov. 2020; 19: 839-859
        • Zeng J.
        • Wu Y.
        • Ren C.
        • et al.
        Therapeutic base editing of human hematopoietic stem cells.
        Nat Med. 2020; 26: 535-541
        • Chen L.
        • Park J.E.
        • Paa P.
        • et al.
        Programmable C: G to G: C genome editing with CRISPR-Cas9-directed base excision repair proteins.
        Nat Commun. 2021; 12: 1384
        • Kurt I.C.
        • Zhou R.
        • Iyer S.
        • et al.
        CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells.
        Nat Biotechnol. 2021; 39: 41-46
        • Zhao D.
        • Li J.
        • Li S.
        • et al.
        Glycosylase base editors enable C-to-A and C-to-G base changes.
        Nat Biotechnol. 2021; 39: 35-40
        • Koblan L.W.
        • Arbab M.
        • Shen M.W.
        • et al.
        Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning.
        Nat Biotechnol. 2021; 39: 1414-1425
        • Zhang H.
        • Sun R.
        • Fei J.
        • et al.
        Correction of beta-thalassemia IVS-II-654 mutation in a mouse model using prime editing.
        Int J Mol Sci. 2022; 23: 5948
        • Magis W.
        • DeWitt M.A.
        • Wyman S.K.
        • et al.
        High-level correction of the sickle mutation is amplified in vivo during erythroid differentiation.
        iScience. 2022; 25: 104374