Advertisement
Review Article| Volume 35, ISSUE 2, P237-251, April 2021

Epigenetic Dysregulation of Myeloproliferative Neoplasms

  • Andrew Dunbar
    Affiliations
    Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA

    Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
    Search for articles by this author
  • Young Park
    Affiliations
    Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
    Search for articles by this author
  • Ross Levine
    Correspondence
    Corresponding author. Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065.
    Affiliations
    Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA

    Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA

    Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA

    Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
    Search for articles by this author
Published:February 04, 2021DOI:https://doi.org/10.1016/j.hoc.2021.01.001

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Hematology/Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Rodrigues CSMA, A. Epigenetic Regulators as the Gatekeepers of Hematopoiesis. Trends in Genetics In press.

        • Shih A.H.
        • Abdel-Wahab O.
        • Patel J.P.
        • et al.
        The role of mutations in epigenetic regulators in myeloid malignancies.
        Nat Rev Cancer. 2012; 12: 599-612
        • Bowman R.L.
        • Busque L.
        • Levine R.L.
        Clonal hematopoiesis and evolution to hematopoietic malignancies.
        Cell Stem Cell. 2018; 22: 157-170
        • Jaiswal S.
        • Fontanillas P.
        • Flannick J.
        • et al.
        Age-related clonal hematopoiesis associated with adverse outcomes.
        N Engl J Med. 2014; 371: 2488-2498
        • Kramann R.
        • Schneider R.K.
        The identification of fibrosis-driving myofibroblast precursors reveals new therapeutic avenues in myelofibrosis.
        Blood. 2018; 131: 2111-2119
        • Villarino A.V.
        • Kanno Y.
        • O'Shea J.J.
        Mechanisms and consequences of Jak-STAT signaling in the immune system.
        Nat Immunol. 2017; 18: 374-384
        • Dawson M.A.
        • Bannister A.J.
        • Gottgens B.
        • et al.
        JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin.
        Nature. 2009; 461: 819-822
        • Kim H.
        • Ronai Z.A.
        PRMT5 function and targeting in cancer.
        Cell Stress. 2020; 4: 199-215
        • Liu F.
        • Zhao X.
        • Perna F.
        • et al.
        JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation.
        Cancer Cell. 2011; 19: 283-294
        • Jeong J.J.
        • Gu X.
        • Nie J.
        • et al.
        Cytokine-regulated phosphorylation and activation of TET2 by JAK2 in hematopoiesis.
        Cancer Discov. 2019; 9: 778-795
        • Nischal S.
        • Bhattacharyya S.
        • Christopeit M.
        • et al.
        Methylome profiling reveals distinct alterations in phenotypic and mutational subgroups of myeloproliferative neoplasms.
        Cancer Res. 2013; 73: 1076-1085
        • Perez C.
        • Pascual M.
        • Martin-Subero J.I.
        • et al.
        Aberrant DNA methylation profile of chronic and transformed classic Philadelphia-negative myeloproliferative neoplasms.
        Haematologica. 2013; 98: 1414-1420
        • Nielsen H.M.
        • Andersen C.L.
        • Westman M.
        • et al.
        Epigenetic changes in myelofibrosis: distinct methylation changes in the myeloid compartments and in cases with ASXL1 mutations.
        Sci Rep. 2017; 7: 6774
        • Asada S.
        • Fujino T.
        • Goyama S.
        • et al.
        The role of ASXL1 in hematopoiesis and myeloid malignancies.
        Cell Mol Life Sci. 2019; 76: 2511-2523
        • Martinez-Calle N.
        • Pascual M.
        • Ordonez R.
        • et al.
        Epigenomic profiling of myelofibrosis reveals widespread DNA methylation changes in enhancer elements and ZFP36L1 as a potential tumor suppressor gene that is epigenetically regulated.
        Haematologica. 2019; 104: 1572-1579
        • Kleppe M.
        • Koche R.
        • Zou L.
        • et al.
        Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms.
        Cancer Cell. 2018; 33: 29-43 e7
        • Skov V.
        Next generation sequencing in MPNs. Lessons from the past and prospects for use as predictors of prognosis and treatment responses.
        Cancers (Basel). 2020; 12: 2194
        • Hautin M.
        • Mornet C.
        • Chauveau A.
        • et al.
        Splicing anomalies in myeloproliferative neoplasms: paving the way for new therapeutic venues.
        Cancers (Basel). 2020; 12: 2216
        • Tefferi A.
        • Lasho T.L.
        • Finke C.M.
        • et al.
        Targeted deep sequencing in primary myelofibrosis.
        Blood Adv. 2016; 1: 105-111
        • Vannucchi A.M.
        • Lasho T.L.
        • Guglielmelli P.
        • et al.
        Mutations and prognosis in primary myelofibrosis.
        Leukemia. 2013; 27: 1861-1869
        • Tefferi A.
        • Lasho T.L.
        • Abdel-Wahab O.
        • et al.
        IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis.
        Leukemia. 2010; 24: 1302-1309
        • Grinfeld J.
        • Nangalia J.
        • Baxter E.J.
        • et al.
        Classification and personalized prognosis in myeloproliferative neoplasms.
        N Engl J Med. 2018; 379: 1416-1430
        • Tefferi A.
        • Lasho T.L.
        • Guglielmelli P.
        • et al.
        Targeted deep sequencing in polycythemia vera and essential thrombocythemia.
        Blood Adv. 2016; 1: 21-30
        • Guglielmelli P.
        • Lasho T.L.
        • Rotunno G.
        • et al.
        The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients.
        Leukemia. 2014; 28: 1804-1810
        • Patel K.P.
        • Newberry K.J.
        • Luthra R.
        • et al.
        Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib.
        Blood. 2015; 126: 790-797
        • Spiegel J.Y.
        • McNamara C.
        • Kennedy J.A.
        • et al.
        Impact of genomic alterations on outcomes in myelofibrosis patients undergoing JAK1/2 inhibitor therapy.
        Blood Adv. 2017; 1: 1729-1738
        • Kroger N.
        • Panagiota V.
        • Badbaran A.
        • et al.
        Impact of molecular genetics on outcome in myelofibrosis patients after allogeneic stem cell transplantation.
        Biol Blood Marrow Transplant. 2017; 23: 1095-1101
        • Tamari R.
        • Rapaport F.
        • Zhang N.
        • et al.
        Impact of high-molecular-risk mutations on transplantation outcomes in patients with myelofibrosis.
        Biol Blood Marrow Transplant. 2019; 25: 1142-1151
        • Lundberg P.
        • Karow A.
        • Nienhold R.
        • et al.
        Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms.
        Blood. 2014; 123: 2220-2228
        • Green A.
        • Beer P.
        Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms.
        N Engl J Med. 2010; 362: 369-370
        • Pardanani A.
        • Lasho T.L.
        • Finke C.M.
        • et al.
        IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms.
        Leukemia. 2010; 24: 1146-1151
        • Tefferi A.
        • Jimma T.
        • Sulai N.H.
        • et al.
        IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F.
        Leukemia. 2012; 26: 475-480
        • Rodriguez-Meira A.
        • Buck G.
        • Clark S.A.
        • et al.
        Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing.
        Mol Cell. 2019; 73: 1292-1305.e8
        • Ortmann C.A.
        • Kent D.G.
        • Nangalia J.
        • et al.
        Effect of mutation order on myeloproliferative neoplasms.
        N Engl J Med. 2015; 372: 601-612
        • Kameda T.
        • Shide K.
        • Yamaji T.
        • et al.
        Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator.
        Blood. 2015; 125: 304-315
        • Chen E.
        • Schneider R.K.
        • Breyfogle L.J.
        • et al.
        Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms.
        Blood. 2015; 125: 327-335
        • Shepherd M.S.
        • Li J.
        • Wilson N.K.
        • et al.
        Single-cell approaches identify the molecular network driving malignant hematopoietic stem cell self- renewal.
        Blood. 2018; 132: 791-803
        • Jacquelin S.
        • Straube J.
        • Cooper L.
        • et al.
        Jak2V617F and Dnmt3a loss cooperate to induce myelofibrosis through activated enhancer-driven inflammation.
        Blood. 2018; 132: 2707-2721
        • Brecqueville M.
        • Rey J.
        • Bertucci F.
        • et al.
        Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms.
        Genes Chromosomes Cancer. 2012; 51: 743-755
        • Montalban-Bravo G.
        • DiNardo C.D.
        The role of IDH mutations in acute myeloid leukemia.
        Future Oncol. 2018; 14: 979-993
        • McKenney A.S.
        • Lau A.N.
        • Somasundara A.V.H.
        • et al.
        JAK2/IDH-mutant-driven myeloproliferative neoplasm is sensitive to combined targeted inhibition.
        J Clin Invest. 2018; 128: 789-804
        • Sparmann A.
        • van Lohuizen M.
        Polycomb silencers control cell fate, development and cancer.
        Nat Rev Cancer. 2006; 6: 846-856
        • Vire E.
        • Brenner C.
        • Deplus R.
        • et al.
        The Polycomb group protein EZH2 directly controls DNA methylation.
        Nature. 2006; 439: 871-874
        • Sashida G.
        • Wang C.
        • Tomioka T.
        • et al.
        The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition.
        J Exp Med. 2016; 213: 1459-1477
        • Shimizu T.
        • Kubovcakova L.
        • Nienhold R.
        • et al.
        Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis.
        J Exp Med. 2016; 213: 1479-1496
        • Yang Y.
        • Akada H.
        • Nath D.
        • et al.
        Loss of Ezh2 cooperates with Jak2V617F in the development of myelofibrosis in a mouse model of myeloproliferative neoplasm.
        Blood. 2016; 127: 3410-3423
        • Abdel-Wahab O.
        • Adli M.
        • LaFave L.M.
        • et al.
        ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression.
        Cancer Cell. 2012; 22: 180-193
        • Abdel-Wahab O.
        • Gao J.
        • Adli M.
        • et al.
        Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo.
        J Exp Med. 2013; 210: 2641-2659
        • Hsu Y.C.
        • Chiu Y.C.
        • Lin C.C.
        • et al.
        The distinct biological implications of Asxl1 mutation and its roles in leukemogenesis revealed by a knock-in mouse model.
        J Hematol Oncol. 2017; 10: 139
        • Nagase R.
        • Inoue D.
        • Pastore A.
        • et al.
        Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation.
        J Exp Med. 2018; 215: 1729-1747
        • Uni M.
        • Masamoto Y.
        • Sato T.
        • et al.
        Modeling ASXL1 mutation revealed impaired hematopoiesis caused by derepression of p16Ink4a through aberrant PRC1-mediated histone modification.
        Leukemia. 2019; 33: 191-204
        • Yang H.
        • Kurtenbach S.
        • Guo Y.
        • et al.
        Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies.
        Blood. 2018; 131: 328-341
        • Guo Y.
        • Zhou Y.
        • Yamatomo S.
        • et al.
        ASXL1 alteration cooperates with JAK2V617F to accelerate myelofibrosis.
        Leukemia. 2019; 33: 1287-1291
        • Sato T.
        • Issa J.J.
        • Kropf P.
        DNA hypomethylating drugs in cancer therapy.
        Cold Spring Harb Perspect Med. 2017; 7: a026948
        • Quintas-Cardama A.
        • Tong W.
        • Kantarjian H.
        • et al.
        A phase II study of 5-azacitidine for patients with primary and post-essential thrombocythemia/polycythemia vera myelofibrosis.
        Leukemia. 2008; 22: 965-970
        • Dunbar A.J.
        • Rampal R.K.
        • Levine R.
        Leukemia secondary to myeloproliferative neoplasms.
        Blood. 2020; 136: 61-70
        • Masarova L.
        • Verstovsek S.
        • Hidalgo-Lopez J.E.
        • et al.
        A phase 2 study of ruxolitinib in combination with azacitidine in patients with myelofibrosis.
        Blood. 2018; 132: 1664-1674
        • Verstovsek S.
        • Mesa R.A.
        • Gotlib J.
        • et al.
        A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis.
        N Engl J Med. 2012; 366: 799-807
        • Stathis A.
        • Bertoni F.
        BET proteins as targets for anticancer treatment.
        Cancer Discov. 2018; 8: 24-36
        • Saenz D.T.
        • Fiskus W.
        • Manshouri T.
        • et al.
        BET protein bromodomain inhibitor-based combinations are highly active against post-myeloproliferative neoplasm secondary AML cells.
        Leukemia. 2017; 31: 678-687
        • Mascarenhas J.
        • Harrison C.
        • Patriarca A.
        • et al.
        CPI-0610, a bromodomain and extraterminal domain protein (BET) inhibitor, in combination with ruxolitinib, in JAK-inhibitor-naïve myelofibrosis patients: update of MANIFEST phase 2 study.
        American Society of Hematology, Virtual2020
        • Talpaz M.R.R.
        • Verstovsek S.
        • Harrisonn C.
        • et al.
        CPI-0610, a bromodomain and extraterminal domain protein (BET) inhibitor, as monotherapy in advanced myelofibrosis patients refractory/intolerant to JAK inhibitor: update from phase 2 MANIFEST study.
        American Society of Hematology, Virtual2020
        • Sprussel A.
        • Schulte J.H.
        • Weber S.
        • et al.
        Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation.
        Leukemia. 2012; 26: 2039-2051
        • Niebel D.
        • Kirfel J.
        • Janzen V.
        • et al.
        Lysine-specific demethylase 1 (LSD1) in hematopoietic and lymphoid neoplasms.
        Blood. 2014; 124: 151-152
        • Jutzi J.S.
        • Kleppe M.
        • Dias J.
        • et al.
        LSD1 inhibition prolongs survival in mouse models of MPN by selectively targeting the disease clone.
        Hemasphere. 2018; 2: e54
        • Yacoub A.P.K.
        • Bradley T.
        • Gerds A.
        • et al.
        A phase 2 study of the LSD1 inhibitor IMG7289 (bomedemstat) for the treatment of advanced myelofibrosis.
        American Society of Hematology, Virtual2020
        • Pettit J.G.A.
        • Yacoub A.
        • Watts J.
        • et al.
        A phase 2a study of the LSD1 inhibitor img-7289 (bomedemstat) for the treatment of myelofibrosis.
        American Society of Hematology, Orlando, FL2019
        • Chifotides H.T.
        • Masarova L.
        • Alfayez M.
        • et al.
        Outcome of patients with IDH1/2-mutated post-myeloproliferative neoplasm AML in the era of IDH inhibitors.
        Blood Adv. 2020; 4: 5336-5342
        • Pastore F.
        • Bhagwat N.
        • Pastore A.
        • et al.
        PRMT5 inhibition modulates E2F1 methylation and gene-regulatory networks leading to therapeutic efficacy in JAK2(V617F)-Mutant MPN.
        Cancer Discov. 2020; 10: 1742-1757
        • Falkenberg K.J.
        • Johnstone R.W.
        Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders.
        Nat Rev Drug Discov. 2014; 13: 673-691
        • Wang Y.
        • Fiskus W.
        • Chong D.G.
        • et al.
        Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells.
        Blood. 2009; 114: 5024-5033
        • Akada H.
        • Akada S.
        • Gajra A.
        • et al.
        Efficacy of vorinostat in a murine model of polycythemia vera.
        Blood. 2012; 119: 3779-3789
        • Evrot E.
        • Ebel N.
        • Romanet V.
        • et al.
        JAK1/2 and Pan-deacetylase inhibitor combination therapy yields improved efficacy in preclinical mouse models of JAK2V617F-driven disease.
        Clin Cancer Res. 2013; 19: 6230-6241
        • Bose P.
        • Swaminathan M.
        • Pemmaraju N.
        • et al.
        A phase 2 study of pracinostat combined with ruxolitinib in patients with myelofibrosis.
        Leuk Lymphoma. 2019; 60: 1767-1774
        • Mascarenhas J.
        • Lu M.
        • Li T.
        • et al.
        A phase I study of panobinostat (LBH589) in patients with primary myelofibrosis (PMF) and post- polycythaemia vera/essential thrombocythaemia myelofibrosis (post-PV/ET MF).
        Br J Haematol. 2013; 161: 68-75
        • Yue L.
        • Sharma V.
        • Horvat N.P.
        • et al.
        HDAC11 deficiency disrupts oncogene-induced hematopoiesis in myeloproliferative neoplasms.
        Blood. 2020; 135: 191-207