Overview of Myeloproliferative Neoplasms

History, Pathogenesis, Diagnostic Criteria, and Complications
Published:January 25, 2021DOI:https://doi.org/10.1016/j.hoc.2020.12.001

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Hematology/Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dickstein J.I.
        • Vardiman J.W.
        Hematopathologic findings in the myeloproliferative disorders.
        Semin Oncol. 1995; 22: 355-373
        • Barosi G.
        • Mesa R.A.
        • Thiele J.
        • et al.
        Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the international working group for myelofibrosis research and treatment.
        Leukemia. 2008; 22: 437-438
        • Arber D.A.
        • Orazi A.
        • Hasserjian R.
        • et al.
        The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.
        Blood. 2016; 127: 2391-2405
        • Rowley J.D.
        Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining.
        Nature. 1973; 243: 290-293
        • Cortes J.E.
        • Talpaz M.
        • Giles F.
        • et al.
        Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy.
        Blood. 2003; 101: 3794-3800
        • Goldman J.M.
        • Apperley J.F.
        • Jones L.
        • et al.
        Bone marrow transplantation for patients with chronic myeloid leukemia.
        N Engl J Med. 1986; 314: 202-207
        • Gratwohl A.
        • Baldomero H.
        • Horisberger B.
        • et al.
        Current trends in hematopoietic stem cell transplantation in Europe.
        Blood. 2002; 100: 2374-2386
        • Druker B.J.
        • Sawyers C.L.
        • Kantarjian H.
        • et al.
        Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome.
        N Engl J Med. 2001; 344: 1038-1042
        • Cohen M.H.
        • Williams G.
        • Johnson J.R.
        • et al.
        Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia.
        Clin Cancer Res. 2002; 8: 935-942
        • Rampal R.
        • Al-Shahrour F.
        • Abdel-Wahab O.
        • et al.
        Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis.
        Blood. 2014; 123: e123-e133
        • Mesa R.A.
        • Miller C.B.
        • Thyne M.
        • et al.
        Differences in treatment goals and perception of symptom burden between patients with myeloproliferative neoplasms (MPNs) and hematologists/oncologists in the United States: findings from the MPN Landmark survey.
        Cancer. 2017; 123: 449-458
        • Mylonas E.
        • Yoshida K.
        • Frick M.
        • et al.
        Single-cell analysis based dissection of clonality in myelofibrosis.
        Nat Commun. 2020; 11: 73
        • Verstovsek S.
        • Mesa R.A.
        • Gotlib J.
        • et al.
        Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial.
        J Hematol Oncol. 2017; 10: 55
        • Harrison C.N.
        • Vannucchi A.M.
        • Kiladjian J.J.
        • et al.
        Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis.
        Leukemia. 2016; 30: 1701-1707
        • Deeg H.J.
        • Bredeson C.
        • Farnia S.
        • et al.
        Hematopoietic cell transplantation as curative therapy for patients with myelofibrosis: long-term success in all age groups. Biology of blood and marrow transplantation.
        Biol Blood Marrow Transplant. 2015; 21: 1883-1887
        • Tremblay D.
        • Marcellino B.
        • Mascarenhas J.
        Pharmacotherapy of myelofibrosis.
        Drugs. 2017; 77: 1549-1563
        • Asher S.
        • McLornan D.P.
        • Harrison C.N.
        Current and future therapies for myelofibrosis.
        Blood Rev. 2020; 42: 100715
        • Shallis R.M.
        • Wang R.
        • Davidoff A.
        • et al.
        Epidemiology of the classical myeloproliferative neoplasms: the four corners of an expansive and complex map.
        Blood Rev. 2020; 42: 100706
        • Passamonti F.
        • Malabarba L.
        • Orlandi E.
        • et al.
        Polycythemia vera in young patients: a study on the long-term risk of thrombosis, myelofibrosis and leukemia.
        Haematologica. 2003; 88: 13-18
        • Cario H.
        • Schwarz K.
        • Herter J.M.
        • et al.
        Clinical and molecular characterisation of a prospectively collected cohort of children and adolescents with polycythemia vera.
        Br J Haematol. 2008; 142: 622-626
        • Srour S.A.
        • Devesa S.S.
        • Morton L.M.
        • et al.
        Incidence and patient survival of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms in the United States, 2001-12.
        Br J Haematol. 2016; 174: 382-396
        • Cobb M.
        Reading and writing the book of nature: Jan Swammerdam (1637–1680).
        Endeavour. 2000; 24: 122-128
        • Hamarneh S.
        Measuring the invisible world. The life and works of Antoni van Leeuwenhoek.
        Science. 1960; 132: 289-290
        • Piller G.
        Leukaemia: a brief historical review from ancient times to 1950.
        Br J Haematol. 2001; 112: 282-292
      1. Donne AF. De l'origine des globules du sang, de leur mode de formatton et de leur fin. Prov Med Surg J 1840;3(77):498–9.

        • Bennett J.H.
        Case of hypertrophy of the spleen and liver, in which death took place from suppuration of the blood.
        Edinburgh Med Sug J. 1845; 64: 413-423
        • Heuck G.
        Zwei fälle von Leukämie mit eigenthümlichem Blut-resp. Knochenmarksbefund.
        Archiv für pathologische Anatomie und Physiologie und für klinische Medicin. 1879; 78: 475-496
        • Vaquez H.
        Sur une forme spéciale de cyanose s’ accompagnant d’hyperglobulie excessive et persistante.
        CR Soc Biol (Paris). 1892; 44: 384-388
        • Osler W.
        Chronic cyanosis, with polycythæmia and enlarged spleen: a new clinical entity.
        Am J Med Sci. 1903; 126: 187
        • Epstein E.
        • Goedel A.
        Hemorrhagic thrombocythemia with a cascular, sclerotic spleen.
        Virchows Arch. 1934; 293: 233-248
        • Dameshek W.
        Some speculations on the myeloproliferative syndromes.
        Blood. 1951; 6: 372-375
        • Adamson J.W.
        • Fialkow P.J.
        • Murphy S.
        • et al.
        Polycythemia vera: stem-cell and probable clonal origin of the disease.
        N Engl J Med. 1976; 295: 913-916
        • Fialkow P.J.
        • Faguet G.B.
        • Jacobson R.J.
        • et al.
        Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell.
        Blood. 1981; 58: 916-919
        • Jacobson R.J.
        • Salo A.
        • Fialkow P.J.
        Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis.
        Blood. 1978; 51: 189-194
      2. Early approaches in the treatment of polycythemia vera. In: Wasserman LR, Berk PD, Berlin NI, editors. Polycythemia vera and the myeloproliferative disorders. Philadelphia: WB Saunders Company; 1995. p. 147–53.

        • Fruchtman S.M.
        • Mack K.
        • Kaplan M.E.
        • et al.
        From efficacy to safety: a Polycythemia Vera Study group report on hydroxyurea in patients with polycythemia vera.
        Semin Hematol. 1997; 34: 17-23
        • Tartaglia A.P.
        • Goldberg J.D.
        • Berk P.D.
        • et al.
        Adverse effects of antiaggregating platelet therapy in the treatment of polycythemia vera.
        Semin Hematol. 1986; 23: 172-176
        • Levine R.L.
        • Loriaux M.
        • Huntly B.J.
        • et al.
        The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia.
        Blood. 2005; 106: 3377-3379
        • James C.
        • Ugo V.
        • Le Couedic J.P.
        • et al.
        A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera.
        Nature. 2005; 434: 1144-1148
        • Kralovics R.
        • Passamonti F.
        • Buser A.S.
        • et al.
        A gain-of-function mutation of JAK2 in myeloproliferative disorders.
        N Engl J Med. 2005; 352: 1779-1790
        • Baxter E.J.
        • Scott L.M.
        • Campbell P.J.
        • et al.
        Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.
        Lancet. 2005; 365: 1054-1061
        • Biswas M.
        • Prakash P.K.
        • Cossburn M.
        • et al.
        Life-threatening thrombotic complications of relative polycythaemia.
        J Intern Med. 2003; 253: 481-483
        • Weinreb N.J.
        • Shih C.F.
        Spurious polycythemia.
        Semin Hematol. 1975; 12: 397-407
        • Kremyanskaya M.
        • Mascarenhas J.
        • Hoffman R.
        Why does my patient have erythrocytosis?.
        Hematol Oncol Clin North Am. 2012; 26: 267-283, vii-viii
        • Huang L.J.
        • Shen Y.M.
        • Bulut G.B.
        Advances in understanding the pathogenesis of primary familial and congenital polycythaemia.
        Br J Haematol. 2010; 148: 844-852
        • Sergeyeva A.
        • Gordeuk V.R.
        • Tokarev Y.N.
        • et al.
        Congenital polycythemia in Chuvashia.
        Blood. 1997; 89: 2148-2154
        • Hoyer J.D.
        • Allen S.L.
        • Beutler E.
        • et al.
        Erythrocytosis due to bisphosphoglycerate mutase deficiency with concurrent glucose-6-phosphate dehydrogenase (G-6-PD) deficiency.
        Am J Hematol. 2004; 75: 205-208
        • Formenti F.
        • Beer P.A.
        • Croft Q.P.
        • et al.
        Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel-Lindau disease and HIF-2alpha gain-of-function mutation.
        FASEB J. 2011; 25: 2001-2011
        • Albiero E.
        • Ruggeri M.
        • Fortuna S.
        • et al.
        Isolated erythrocytosis: study of 67 patients and identification of three novel germ-line mutations in the prolyl hydroxylase domain protein 2 (PHD2) gene.
        Haematologica. 2012; 97: 123-127
        • Gordeuk V.R.
        • Sergueeva A.I.
        • Miasnikova G.Y.
        • et al.
        Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular abnormalities but not tumors.
        Blood. 2004; 103: 3924-3932
        • Percy M.J.
        • McMullin M.F.
        • Jowitt S.N.
        • et al.
        Chuvash-type congenital polycythemia in 4 families of Asian and Western European ancestry.
        Blood. 2003; 102: 1097-1099
        • Tefferi A.
        • Rumi E.
        • Finazzi G.
        • et al.
        Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study.
        Leukemia. 2013; 27: 1874-1881
        • Pardanani A.
        • Lasho T.L.
        • Finke C.
        • et al.
        Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera.
        Leukemia. 2007; 21: 1960-1963
        • Silver R.T.
        • Krichevsky S.
        Distinguishing essential thrombocythemia JAK2V617F from polycythemia vera: limitations of erythrocyte values.
        Haematologica. 2019; 104: 2200-2205
        • Santhosh-Kumar C.R.
        • Yohannan M.D.
        • Higgy K.E.
        • et al.
        Thrombocytosis in adults: analysis of 777 patients.
        J Intern Med. 1991; 229: 493-495
        • Vannucchi A.M.
        • Barbui T.
        Thrombocytosis and thrombosis.
        Hematology Am Soc Hematol Educ Program. 2007; : 363-370https://doi.org/10.1182/asheducation-2007.1.363
        • Wiestner A.
        • Schlemper R.J.
        • van der Maas A.P.
        • et al.
        An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia.
        Nat Genet. 1998; 18: 49-52
        • Ghilardi N.
        • Wiestner A.
        • Kikuchi M.
        • et al.
        Hereditary thrombocythaemia in a Japanese family is caused by a novel point mutation in the thrombopoietin gene.
        Br J Haematol. 1999; 107: 310-316
        • Teofili L.
        • Larocca L.M.
        Advances in understanding the pathogenesis of familial thrombocythaemia.
        Br J Haematol. 2011; 152: 701-712
        • Tefferi A.
        • Guglielmelli P.
        • Larson D.R.
        • et al.
        Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis.
        Blood. 2014; 124 ([quiz 2615]): 2507-2513
        • Milosevic Feenstra J.D.
        • Nivarthi H.
        • Gisslinger H.
        • et al.
        Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.
        Blood. 2016; 127: 325-332
        • Tefferi A.
        • Lasho T.L.
        • Finke C.M.
        • et al.
        Targeted deep sequencing in primary myelofibrosis.
        Blood Adv. 2016; 1: 105-111
        • Thiele J.
        • Georgii A.
        • Vykoupil K.F.
        Ultrastructure of chronic megakaryocytic-granulocytic myelosis.
        Blut. 1976; 32: 433-438
        • Vardiman J.W.
        • Harris N.L.
        • Brunning R.D.
        The World Health Organization (WHO) classification of the myeloid neoplasms.
        Blood. 2002; 100: 2292-2302
        • Vardiman J.W.
        • Thiele J.
        • Arber D.A.
        • et al.
        The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes.
        Blood. 2009; 114: 937-951
        • Barbui T.
        • Thiele J.
        • Passamonti F.
        • et al.
        Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study.
        J Clin Oncol. 2011; 29: 3179-3184
        • Guglielmelli P.
        • Pacilli A.
        • Rotunno G.
        • et al.
        Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis.
        Blood. 2017; 129: 3227-3236
        • Cervantes F.
        • Dupriez B.
        • Pereira A.
        • et al.
        New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment.
        Blood. 2009; 113: 2895-2901
        • Skoda R.C.
        • Duek A.
        • Grisouard J.
        Pathogenesis of myeloproliferative neoplasms.
        Exp Hematol. 2015; 43: 599-608
        • Kralovics R.
        • Skoda R.C.
        Molecular pathogenesis of Philadelphia chromosome negative myeloproliferative disorders.
        Blood Rev. 2005; 19: 1-13
        • Lundberg P.
        • Takizawa H.
        • Kubovcakova L.
        • et al.
        Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing JAK2-V617F.
        J Exp Med. 2014; 211: 2213-2230
        • Zahr A.A.
        • Salama M.E.
        • Carreau N.
        • et al.
        Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies.
        Haematologica. 2016; 101: 660-671
        • Kimura A.
        • Katoh O.
        • Hyodo H.
        • et al.
        Transforming growth factor-beta regulates growth as well as collagen and fibronectin synthesis of human marrow fibroblasts.
        Br J Haematol. 1989; 72: 486-491
        • Ozono Y.
        • Shide K.
        • Kameda T.
        • et al.
        Neoplastic fibrocytes play an essential role in bone marrow fibrosis in Jak2V617F-induced primary myelofibrosis mice.
        Leukemia. 2020; https://doi.org/10.1038/s41375-020-0880-3
        • Pardanani A.D.
        • Levine R.L.
        • Lasho T.
        • et al.
        MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients.
        Blood. 2006; 108: 3472-3476
        • Lasho T.L.
        • Pardanani A.
        • Tefferi A.
        LNK mutations in JAK2 mutation-negative erythrocytosis.
        N Engl J Med. 2010; 363: 1189-1190
        • Tong W.
        • Lodish H.F.
        Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis.
        J Exp Med. 2004; 200: 569-580
        • Marty C.
        • Pecquet C.
        • Nivarthi H.
        • et al.
        Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis.
        Blood. 2016; 127: 1317-1324
        • Klampfl T.
        • Gisslinger H.
        • Harutyunyan A.S.
        • et al.
        Somatic mutations of calreticulin in myeloproliferative neoplasms.
        N Engl J Med. 2013; 369: 2379-2390
        • Lundberg P.
        • Karow A.
        • Nienhold R.
        • et al.
        Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms.
        Blood. 2014; 123: 2220-2228
        • Vannucchi A.M.
        • Lasho T.L.
        • Guglielmelli P.
        • et al.
        Mutations and prognosis in primary myelofibrosis.
        Leukemia. 2013; 27: 1861-1869
        • Colotta F.
        • Allavena P.
        • Sica A.
        • et al.
        Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability.
        Carcinogenesis. 2009; 30: 1073-1081
        • Barbui T.
        • Carobbio A.
        • Finazzi G.
        • et al.
        Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3.
        Haematologica. 2011; 96: 315-318
        • Barbui T.
        • Carobbio A.
        • Finazzi G.
        • et al.
        Elevated C-reactive protein is associated with shortened leukemia-free survival in patients with myelofibrosis.
        Leukemia. 2013; 27: 2084-2086
        • Skov V.
        • Larsen T.S.
        • Thomassen M.
        • et al.
        Molecular profiling of peripheral blood cells from patients with polycythemia vera and related neoplasms: identification of deregulated genes of significance for inflammation and immune surveillance.
        Leuk Res. 2012; 36: 1387-1392
        • Skov V.
        • Larsen T.S.
        • Thomassen M.
        • et al.
        Whole-blood transcriptional profiling of interferon-inducible genes identifies highly upregulated IFI27 in primary myelofibrosis.
        Eur J Haematol. 2011; 87: 54-60
        • Fisher D.A.C.
        • Miner C.A.
        • Engle E.K.
        • et al.
        Cytokine production in myelofibrosis exhibits differential responsiveness to JAK-STAT, MAP kinase, and NFkappaB signaling.
        Leukemia. 2019; 33: 1978-1995
        • Kristinsson S.Y.
        • Landgren O.
        • Samuelsson J.
        • et al.
        Autoimmunity and the risk of myeloproliferative neoplasms.
        Haematologica. 2010; 95: 1216-1220
        • Pedersen K.M.
        • Bak M.
        • Sorensen A.L.
        • et al.
        Smoking is associated with increased risk of myeloproliferative neoplasms: a general population-based cohort study.
        Cancer Med. 2018; 7: 5796-5802
        • Wang J.C.
        • Chang T.H.
        • Goldberg A.
        • et al.
        Quantitative analysis of growth factor production in the mechanism of fibrosis in agnogenic myeloid metaplasia.
        Exp Hematol. 2006; 34: 1617-1623
        • Cho S.Y.
        • Xu M.
        • Roboz J.
        • et al.
        The effect of CXCL12 processing on CD34+ cell migration in myeloproliferative neoplasms.
        Cancer Res. 2010; 70: 3402-3410
        • Tefferi A.
        • Vaidya R.
        • Caramazza D.
        • et al.
        Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study.
        J Clin Oncol. 2011; 29: 1356-1363
        • Hultcrantz M.
        • Bjorkholm M.
        • Dickman P.W.
        • et al.
        Risk for arterial and venous thrombosis in patients with myeloproliferative neoplasms: a population-based cohort study.
        Ann Intern Med. 2018; 168: 317-325
        • Sekhar M.
        • McVinnie K.
        • Burroughs A.K.
        Splanchnic vein thrombosis in myeloproliferative neoplasms.
        Br J Haematol. 2013; 162: 730-747
        • Tremblay D.
        • Vogel A.S.
        • Moshier E.
        • et al.
        Outcomes of splanchnic vein thrombosis in patients with myeloproliferative neoplasms in a single center experience.
        Eur J Haematol. 2019; 104: 72-73
        • Sozer S.
        • Fiel M.I.
        • Schiano T.
        • et al.
        The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd-Chiari syndrome.
        Blood. 2009; 113: 5246-5249
        • Guy A.
        • Gourdou-Latyszenok V.
        • Le Lay N.
        • et al.
        Vascular endothelial cell expression of JAK2(V617F) is sufficient to promote a pro-thrombotic state due to increased P-selectin expression.
        Haematologica. 2019; 104: 70-81
        • van Genderen P.J.
        • Lucas I.S.
        • van Strik R.
        • et al.
        Erythromelalgia in essential thrombocythemia is characterized by platelet activation and endothelial cell damage but not by thrombin generation.
        Thromb Haemost. 1996; 76: 333-338
        • Rungjirajittranon T.
        • Owattanapanich W.
        • Ungprasert P.
        • et al.
        A systematic review and meta-analysis of the prevalence of thrombosis and bleeding at diagnosis of Philadelphia-negative myeloproliferative neoplasms.
        BMC cancer. 2019; 19: 184
        • Campbell P.J.
        • MacLean C.
        • Beer P.A.
        • et al.
        Correlation of blood counts with vascular complications in essential thrombocythemia: analysis of the prospective PT1 cohort.
        Blood. 2012; 120: 1409-1411
        • Mital A.
        • Prejzner W.
        • Bieniaszewska M.
        • et al.
        Prevalence of acquired von Willebrand syndrome during essential thrombocythemia: a retrospective analysis of 170 consecutive patients.
        Pol Arch Med Wewn. 2015; 125: 914-920
        • Dunbar A.J.
        • Rampal R.K.
        • Levine R.
        Leukemia secondary to myeloproliferative neoplasms.
        Blood. 2020; 136: 61-70
        • Vallapureddy R.R.
        • Mudireddy M.
        • Penna D.
        • et al.
        Leukemic transformation among 1306 patients with primary myelofibrosis: risk factors and development of a predictive model.
        Blood Cancer J. 2019; 9: 12
        • Vannucchi A.M.
        • Guglielmelli P.
        • Rotunno G.
        • et al.
        Mutation-enhanced international prognostic scoring system (MIPSS) for primary myelofibrosis: an AGIMM & IWG-MRT Project.
        Blood. 2014; 124: 405
        • Tefferi A.
        • Guglielmelli P.
        • Nicolosi M.
        • et al.
        GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis.
        Leukemia. 2018; 32: 1631-1642
        • Tefferi A.
        • Lasho T.L.
        • Guglielmelli P.
        • et al.
        Targeted deep sequencing in polycythemia vera and essential thrombocythemia.
        Blood Adv. 2016; 1: 21-30
        • Hultcrantz M.
        • Wilkes S.R.
        • Kristinsson S.Y.
        • et al.
        Risk and cause of death in patients diagnosed with myeloproliferative neoplasms in sweden between 1973 and 2005: a population-based study.
        J Clin Oncol. 2015; 33: 2288-2295
        • Landtblom A.R.
        • Andersson T.M.
        • Dickman P.W.
        • et al.
        Risk of infections in patients with myeloproliferative neoplasms-a population-based cohort study of 8363 patients.
        Leukemia. 2020; https://doi.org/10.1038/s41375-020-0909-7
        • Lussana F.
        • Cattaneo M.
        • Rambaldi A.
        • et al.
        Ruxolitinib-associated infections: a systematic review and meta-analysis.
        Am J Hematol. 2018; 93: 339-347
        • Tremblay D.
        • King A.
        • Li L.
        • et al.
        Risk factors for infections and secondary malignancies in patients with a myeloproliferative neoplasm treated with ruxolitinib: a dual-center, propensity score-matched analysis.
        Leuk Lymphoma. 2019; : 1-8
        • Frederiksen H.
        • Farkas D.K.
        • Christiansen C.F.
        • et al.
        Chronic myeloproliferative neoplasms and subsequent cancer risk: a Danish population-based cohort study.
        Blood. 2011; 118: 6515-6520
        • Hasselbalch H.C.
        Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development?.
        Leuk Res. 2013; 37: 214-220
        • Porpaczy E.
        • Tripolt S.
        • Hoelbl-Kovacic A.
        • et al.
        Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy.
        Blood. 2018; 132: 694-706
        • Pemmaraju N.
        • Kantarjian H.
        • Nastoupil L.
        • et al.
        Characteristics of patients with myeloproliferative neoplasms with lymphoma, with or without JAK inhibitor therapy.
        Blood. 2019; 133: 2348-2351
        • Hong J.
        • Lee J.H.
        • Byun J.M.
        • et al.
        Risk of disease transformation and second primary solid tumors in patients with myeloproliferative neoplasms.
        Blood Adv. 2019; 3: 3700-3708