Advertisement
Review Article| Volume 34, ISSUE 1, P229-251, February 2020

Radiation Therapy for Benign Disease

Keloids, Macular Degeneration, Orbital Pseudotumor, Pterygium, Peyronie Disease, Trigeminal Neuralgia
Published:October 30, 2019DOI:https://doi.org/10.1016/j.hoc.2019.09.006

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Hematology/Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rodel F.
        • Fournier C.
        • Wiedemann J.
        • et al.
        Basics of radiation biology when treating hyperproliferative benign diseases.
        Front Immunol. 2017; 8: 519
        • Berman B.
        • Flores F.
        The treatment of hypertrophic scars and keloids.
        Eur J Dermatol. 1998; 8: 591-595
        • Niessen F.B.
        • Spauwen P.H.
        • Schalkwijk J.
        • et al.
        On the nature of hypertrophic scars and keloids: a review.
        Plast Reconstr Surg. 1999; 104: 1435-1458
        • English R.S.
        • Shenefelt P.D.
        Keloids and hypertrophic scars.
        Dermatol Surg. 1999; 25: 631-638
        • Abergel R.P.
        • Pizzurro D.
        • Meeker C.A.
        • et al.
        Biochemical composition of the connective tissue in keloids and analysis of collagen metabolism in keloid fibroblast cultures.
        J Invest Dermatol. 1985; 84: 384-390
        • Bettinger D.A.
        • Yager D.R.
        • Diegelmann R.F.
        • et al.
        The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis.
        Plast Reconstr Surg. 1996; 98: 827-833
        • Calderon M.
        • Lawrence W.T.
        • Banes A.J.
        Increased proliferation in keloid fibroblasts wounded in vitro.
        J Surg Res. 1996; 61: 343-347
        • Younai S.
        • Nichter L.S.
        • Wellisz T.
        • et al.
        Modulation of collagen synthesis by transforming growth factor-beta in keloid and hypertrophic scar fibroblasts.
        Ann Plast Surg. 1994; 33: 148-151
        • Babu M.
        • Diegelmann R.
        • Oliver N.
        Fibronectin is overproduced by keloid fibroblasts during abnormal wound healing.
        Mol Cell Biol. 1989; 9: 1642-1650
        • Smith P.
        • Mosiello G.
        • Deluca L.
        • et al.
        TGF-beta2 activates proliferative scar fibroblasts.
        J Surg Res. 1999; 82: 319-323
        • Keeling B.H.
        • Whitsitt J.
        • Liu A.
        • et al.
        Keloid removal by shave excision with adjuvant external beam radiation therapy.
        Dermatol Surg. 2015; 41: 989-992
        • van Leeuwen M.C.
        • Stokmans S.C.
        • Bulstra A.E.
        • et al.
        Surgical excision with adjuvant irradiation for treatment of keloid scars: a systematic review.
        Plast Reconstr Surg Glob Open. 2015; 3: e440
        • Guix B.
        • Andres A.
        • Salort P.
        Keloids and hypertrophic scars.
        Springer, Berlin2008
        • McKeown S.R.
        • Hatfield P.
        • Prestwich R.J.
        • et al.
        Radiotherapy for benign disease; assessing the risk of radiation-induced cancer following exposure to intermediate dose radiation.
        Br J Radiol. 2015; 88: 20150405
        • Brown J.J.
        • Bayat A.
        Genetic susceptibility to raised dermal scarring.
        Br J Dermatol. 2009; 161: 8-18
        • Marneros A.G.
        • Norris J.E.
        • Olsen B.R.
        • et al.
        Clinical genetics of familial keloids.
        Arch Dermatol. 2001; 137: 1429-1434
        • Rockwell W.B.
        • Cohen I.K.
        • Ehrlich H.P.
        Keloids and hypertrophic scars: a comprehensive review.
        Plast Reconstr Surg. 1989; 84: 827-837
        • Abrams B.J.
        • Benedetto A.V.
        • Humeniuk H.M.
        Exuberant keloidal formation.
        J Am Osteopath Assoc. 1993; 93: 863-865
        • Poochareon V.N.
        • Berman B.
        New therapies for the management of keloids.
        J Craniofac Surg. 2003; 14: 654-657
        • Zainib M.
        • Amin N.P.
        Radiation therapy in the treatment of keloids.
        StatPearls, Treasure Island (FL)2019
        • Mustoe T.A.
        • Cooter R.D.
        • Gold M.H.
        • et al.
        International clinical recommendations on scar management.
        Plast Reconstr Surg. 2002; 110: 560-571
        • Flickinger J.C.
        A radiobiological analysis of multicenter data for postoperative keloid radiotherapy.
        Int J Radiat Oncol Biol Phys. 2011; 79: 1164-1170
        • Kal H.B.
        • Veen R.E.
        Biologically effective doses of postoperative radiotherapy in the prevention of keloids. Dose-effect relationship.
        Strahlenther Onkol. 2005; 181: 717-723
        • Kutzner J.
        • Schneider L.
        • Seegenschmiedt M.H.
        Radiotherapy of keloids. Patterns of care study -- results.
        Strahlenther Onkol. 2003; 179 ([in German]): 54-58
        • Arnault J.P.
        • Peiffert D.
        • Latarche C.
        • et al.
        Keloids treated with postoperative Iridium 192* brachytherapy: a retrospective study.
        J Eur Acad Dermatol Venereol. 2009; 23: 807-813
        • Ollstein R.N.
        • Siegel H.W.
        • Gillooley J.F.
        • et al.
        Treatment of keloids by combined surgical excision and immediate postoperative X-ray therapy.
        Ann Plast Surg. 1981; 7: 281-285
        • Borok T.L.
        • Bray M.
        • Sinclair I.
        • et al.
        Role of ionizing irradiation for 393 keloids.
        Int J Radiat Oncol Biol Phys. 1988; 15: 865-870
        • Mankowski P.
        • Kanevsky J.
        • Tomlinson J.
        • et al.
        Optimizing radiotherapy for keloids: a meta-analysis systematic review comparing recurrence rates between different radiation modalities.
        Ann Plast Surg. 2017; 78: 403-411
        • Bertiere M.N.
        • Jousset C.
        • Marin J.L.
        • et al.
        Value of interstitial irradiation of keloid scars by Iridium 192. Apropos of 46 cases.
        Ann Chir Plast Esthet. 1990; 35 ([in French]): 27-30
        • Escarmant P.
        • Zimmermann S.
        • Amar A.
        • et al.
        The treatment of 783 keloid scars by iridium 192 interstitial irradiation after surgical excision.
        Int J Radiat Oncol Biol Phys. 1993; 26: 245-251
        • Garg M.K.
        • Weiss P.
        • Sharma A.K.
        • et al.
        Adjuvant high dose rate brachytherapy (Ir-192) in the management of keloids which have recurred after surgical excision and external radiation.
        Radiother Oncol. 2004; 73: 233-236
        • Jiang P.
        • Geenen M.
        • Siebert F.A.
        • et al.
        Efficacy and the toxicity of the interstitial high-dose-rate brachytherapy in the management of recurrent keloids: 5-year outcomes.
        Brachytherapy. 2018; 17: 597-600
        • Kim K.
        • Son D.
        • Kim J.
        Radiation therapy following total keloidectomy: a retrospective study over 11 years.
        Arch Plast Surg. 2015; 42: 588-595
        • Shen J.
        • Lian X.
        • Sun Y.
        • et al.
        Hypofractionated electron-beam radiation therapy for keloids: retrospective study of 568 cases with 834 lesions.
        J Radiat Res. 2015; 56: 811-817
        • Emad M.
        • Omidvari S.
        • Dastgheib L.
        • et al.
        Surgical excision and immediate postoperative radiotherapy versus cryotherapy and intralesional steroids in the management of keloids: a prospective clinical trial.
        Med Princ Pract. 2010; 19: 402-405
        • Malaker K.
        • Vijayraghavan K.
        • Hodson I.
        • et al.
        Retrospective analysis of treatment of unresectable keloids with primary radiation over 25 years.
        Clin Oncol (R Coll Radiol). 2004; 16: 290-298
        • Lo T.C.
        • Seckel B.R.
        • Salzman F.A.
        • et al.
        Single-dose electron beam irradiation in treatment and prevention of keloids and hypertrophic scars.
        Radiother Oncol. 1990; 19: 267-272
        • Byrne S.
        • Beatty S.
        Current concepts and recent advances in the management of age-related macular degeneration.
        Ir J Med Sci. 2003; 172: 185-190
        • Verma L.
        • Das T.
        • Binder S.
        • et al.
        New approaches in the management of choroidal neovascular membrane in age-related macular degeneration.
        Indian J Ophthalmol. 2000; 48: 263-278
        • Noble K.G.
        • Carr R.E.
        Acquired macular degeneration. I. Nonexudative (dry) macular degeneration.
        Ophthalmology. 1985; 92: 591-592
        • Young R.W.
        Pathophysiology of age-related macular degeneration.
        Surv Ophthalmol. 1987; 31: 291-306
        • Votruba M.
        • Gregor Z.
        Neovascular age-related macular degeneration: present and future treatment options.
        Eye (Lond). 2001; 15: 424-429
        • Comer G.M.
        • Ciulla T.A.
        • Criswell M.H.
        • et al.
        Current and future treatment options for nonexudative and exudative age-related macular degeneration.
        Drugs Aging. 2004; 21: 967-992
        • van Wijngaarden P.
        • Coster D.J.
        • Williams K.A.
        Inhibitors of ocular neovascularization: promises and potential problems.
        JAMA. 2005; 293: 1509-1513
        • Flaxel C.J.
        Use of radiation in the treatment of age-related macular degeneration.
        Ophthalmol Clin North Am. 2002; 15 (v): 437-444
        • Jackson T.L.
        • Chakravarthy U.
        • Slakter J.S.
        • et al.
        Stereotactic radiotherapy for neovascular age-related macular degeneration: year 2 results of the INTREPID study.
        Ophthalmology. 2015; 122: 138-145
        • Freiberg F.J.
        • Michels S.
        • Muldrew A.
        • et al.
        Microvascular abnormalities secondary to radiation therapy in neovascular age-related macular degeneration: findings from the INTREPID clinical trial.
        Br J Ophthalmol. 2019; 103: 469-474
        • Jackson T.L.
        • Desai R.
        • Simpson A.
        • et al.
        Epimacular brachytherapy for previously treated neovascular age-related macular degeneration (MERLOT): a phase 3 randomized controlled trial.
        Ophthalmology. 2016; 123: 1287-1296
        • Park S.S.
        • Daftari I.
        • Phillips T.
        • et al.
        Three-year follow-up of a pilot study of ranibizumab combined with proton beam irradiation as treatment for exudative age-related macular degeneration.
        Retina. 2012; 32: 956-966
        • Jaakkola A.
        • Heikkonen J.
        • Tommila P.
        • et al.
        Strontium plaque brachytherapy for exudative age-related macular degeneration: three-year results of a randomized study.
        Ophthalmology. 2005; 112: 567-573
        • Marcus D.M.
        • Sheils W.C.
        • Young J.O.
        • et al.
        Radiotherapy for recurrent choroidal neovascularisation complicating age related macular degeneration.
        Br J Ophthalmol. 2004; 88: 114-119
        • Prettenhofer U.
        • Haas A.
        • Mayer R.
        • et al.
        Long-term results after external radiotherapy in age-related macular degeneration. A prospective study.
        Strahlenther Onkol. 2004; 180: 91-95
        • Hart P.M.
        • Chakravarthy U.
        • Mackenzie G.
        • et al.
        Visual outcomes in the subfoveal radiotherapy study: a randomized controlled trial of teletherapy for age-related macular degeneration.
        Arch Ophthalmol. 2002; 120: 1029-1038
        • Valmaggia C.
        • Ries G.
        • Ballinari P.
        Radiotherapy for subfoveal choroidal neovascularization in age-related macular degeneration: a randomized clinical trial.
        Am J Ophthalmol. 2002; 133: 521-529
        • Schittkowski M.
        • Schneider H.
        • Gruschow K.
        • et al.
        3 years experience with low dosage fractionated percutaneous teletherapy in subfoveal neovascularization. Clinical results.
        Strahlenther Onkol. 2001; 177 ([in German]): 345-353
        • Kobayashi H.
        • Kobayashi K.
        Age-related macular degeneration: long-term results of radiotherapy for subfoveal neovascular membranes.
        Am J Ophthalmol. 2000; 130: 617-635
        • Chaudhry I.A.
        • Shamsi F.A.
        • Arat Y.O.
        • et al.
        Orbital pseudotumor: distinct diagnostic features and management.
        Middle East Afr J Ophthalmol. 2008; 15: 17-27
        • Jacobs D.
        • Galetta S.
        Diagnosis and management of orbital pseudotumor.
        Curr Opin Ophthalmol. 2002; 13: 347-351
        • Fujii H.
        • Fujisada H.
        • Kondo T.
        • et al.
        Orbital pseudotumor: histopathological classification and treatment.
        Ophthalmologica. 1985; 190: 230-242
        • Sergott R.C.
        • Glaser J.S.
        • Charyulu K.
        Radiotherapy for idiopathic inflammatory orbital pseudotumor. Indications and results.
        Arch Ophthalmol. 1981; 99: 853-856
        • Austin-Seymour M.M.
        • Donaldson S.S.
        • Egbert P.R.
        • et al.
        Radiotherapy of lymphoid diseases of the orbit.
        Int J Radiat Oncol Biol Phys. 1985; 11: 371-379
        • Mittal B.B.
        • Deutsch M.
        • Kennerdell J.
        • et al.
        Paraocular lymphoid tumors.
        Radiology. 1986; 159: 793-796
        • Lanciano R.
        • Fowble B.
        • Sergott R.C.
        • et al.
        The results of radiotherapy for orbital pseudotumor.
        Int J Radiat Oncol Biol Phys. 1990; 18: 407-411
        • Keleti D.
        • Flickinger J.C.
        • Hobson S.R.
        • et al.
        Radiotherapy of lymphoproliferative diseases of the orbit. Surveillance of 65 cases.
        Am J Clin Oncol. 1992; 15: 422-427
        • Matthiesen C.
        • Bogardus Jr., C.
        • Thompson J.S.
        • et al.
        The efficacy of radiotherapy in the treatment of orbital pseudotumor.
        Int J Radiat Oncol Biol Phys. 2011; 79: 1496-1502
        • Prabhu R.S.
        • Kandula S.
        • Liebman L.
        • et al.
        Association of clinical response and long-term outcome among patients with biopsied orbital pseudotumor receiving modern radiation therapy.
        Int J Radiat Oncol Biol Phys. 2013; 85: 643-649
        • Mokhtech M.
        • Nurkic S.
        • Morris C.G.
        • et al.
        Radiotherapy for orbital pseudotumor: the University of Florida experience.
        Cancer Invest. 2018; 36: 330-337
        • Char D.H.
        • Miller T.
        Orbital pseudotumor. Fine-needle aspiration biopsy and response to therapy.
        Ophthalmology. 1993; 100: 1702-1710
        • Threlfall T.J.
        • English D.R.
        Sun exposure and pterygium of the eye: a dose-response curve.
        Am J Ophthalmol. 1999; 128: 280-287
        • Luthra R.
        • Nemesure B.B.
        • Wu S.Y.
        • et al.
        Frequency and risk factors for pterygium in the Barbados eye study.
        Arch Ophthalmol. 2001; 119: 1827-1832
        • de Keizer R.J.
        • Swart-van den Berg M.
        • Baartse W.J.
        Results of pterygium excision with Sr 90 irradiation, lamellar keratoplasty and conjunctival flaps.
        Doc Ophthalmol. 1987; 67: 33-44
        • Alaniz-Camino F.
        The use of postoperative beta radiation in the treatment of pterygia.
        Ophthalmic Surg. 1982; 13: 1022-1025
        • de Keizer R.J.
        Pterygium excision with or without postoperative irradiation, a double-blind study.
        Doc Ophthalmol. 1982; 52: 309-315
        • Van den Brenk H.A.S.
        Results of prophylactic post-operative irradiation in 1300 cases of pterygium.
        Am J Roentgenol. 1968; 103: 723
        • Aswad M.I.
        • Baum J.
        Optimal time for postoperative irradiation of pterygia.
        Ophthalmology. 1987; 94: 1450-1451
        • Dusenbery K.E.
        • Alul I.H.
        • Holland E.J.
        • et al.
        Beta irradiation of recurrent ptergia: results and complications.
        Int J Radiat Oncol Biol Phys. 1992; 24: 315-320
        • Viani G.A.
        • De Fendi L.I.
        • Fonseca E.C.
        • et al.
        Low or high fractionation dose beta-radiotherapy for pterygium? A randomized clinical trial.
        Int J Radiat Oncol Biol Phys. 2012; 82: e181-e185
        • Nakamatsu K.
        • Nishimura Y.
        • Kanamori S.
        • et al.
        Randomized clinical trial of postoperative strontium-90 radiation therapy for pterygia: treatment using 30 Gy/3 fractions vs. 40 Gy/4 fractions.
        Strahlenther Onkol. 2011; 187: 401-405
        • Yamada T.
        • Mochizuki H.
        • Ue T.
        • et al.
        Comparative study of different beta-radiation doses for preventing pterygium recurrence.
        Int J Radiat Oncol Biol Phys. 2011; 81: 1394-1398
        • Kal H.B.
        • Veen R.E.
        • Jurgenliemk-Schulz I.M.
        Dose-effect relationships for recurrence of keloid and pterygium after surgery and radiotherapy.
        Int J Radiat Oncol Biol Phys. 2009; 74: 245-251
        • Pajic B.
        • Greiner R.H.
        Long term results of non-surgical, exclusive strontium-/yttrium-90 beta-irradiation of pterygia.
        Radiother Oncol. 2005; 74: 25-29
        • Monteiro-Grillo I.
        • Gaspar L.
        • Monteiro-Grillo M.
        • et al.
        Postoperative irradiation of primary or recurrent pterygium: results and sequelae.
        Int J Radiat Oncol Biol Phys. 2000; 48: 865-869
        • MacKenzie F.D.
        • Hirst L.W.
        • Kynaston B.
        • et al.
        Recurrence rate and complications after beta irradiation for pterygia.
        Ophthalmology. 1991; 98 ([discussion: 1781]): 1776-1780
        • Chen P.P.
        • Ariyasu R.G.
        • Kaza V.
        • et al.
        A randomized trial comparing mitomycin C and conjunctival autograft after excision of primary pterygium.
        Am J Ophthalmol. 1995; 120: 151-160
        • Bekibele C.O.
        • Baiyeroju A.M.
        • Ajayi B.G.
        5-fluorouracil vs. beta-irradiation in the prevention of pterygium recurrence.
        Int J Clin Pract. 2004; 58: 920-923
        • Asregadoo E.R.
        Surgery, thio-tepa, and corticosteroid in the treatment of pterygium.
        Am J Ophthalmol. 1972; 74: 960-963
        • Schultze J.
        • Hinrichs M.
        • Kimmig B.
        Results of adjuvant radiation therapy after surgical excision of pterygium.
        Ger J Ophthalmol. 1996; 5: 207-210
        • Paryani S.B.
        • Scott W.P.
        • Wells Jr., J.W.
        • et al.
        Management of pterygium with surgery and radiation therapy. The North Florida Pterygium Study Group.
        Int J Radiat Oncol Biol Phys. 1994; 28: 101-103
        • Monselise M.
        • Schwartz M.
        • Politi F.
        • et al.
        Pterygium and beta irradiation.
        Acta Ophthalmol (Copenh). 1984; 62: 315-319
        • Rodrigues C.I.
        • Njo K.H.
        • Karim A.B.
        Results of radiotherapy and vitamin E in the treatment of Peyronie's disease.
        Int J Radiat Oncol Biol Phys. 1995; 31: 571-576
        • Tunuguntla H.S.
        Management of Peyronie's disease--a review.
        World J Urol. 2001; 19: 244-250
        • Koren H.
        • Alth G.
        • Schenk G.M.
        • et al.
        Induratio penis plastica: effectivity of low-dose radiotherapy at different clinical stages.
        Urol Res. 1996; 24: 245-248
        • Incrocci L.
        • Wijnmaalen A.
        • Slob A.K.
        • et al.
        Low-dose radiotherapy in 179 patients with Peyronie's disease: treatment outcome and current sexual functioning.
        Int J Radiat Oncol Biol Phys. 2000; 47: 1353-1356
        • Viljoen I.M.
        • Goedhals L.
        • Doman M.J.
        Peyronie's disease--a perspective on the disease and the long-term results of radiotherapy.
        S Afr Med J. 1993; 83: 19-20
        • Andresen R.
        • Wegner H.E.
        • Miller K.
        • et al.
        Imaging modalities in Peyronie's disease. An intrapersonal comparison of ultrasound sonography, X-ray in mammography technique, computerized tomography, and nuclear magnetic resonance in 20 patients.
        Eur Urol. 1998; 34 ([discussion: 135]): 128-134
        • Furlow W.L.
        • Swenson Jr., H.E.
        • Lee R.E.
        Peyronie's disease: a study of its natural history and treatment with orthovoltage radiotherapy.
        J Urol. 1975; 114: 69-71
        • Mulhall J.P.
        • Hall M.
        • Broderick G.A.
        • et al.
        Radiation therapy in Peyronie's disease.
        J Sex Med. 2012; 9: 1435-1441
        • Gelbard M.
        • Goldstein I.
        • Hellstrom W.J.
        • et al.
        Clinical efficacy, safety and tolerability of collagenase clostridium histolyticum for the treatment of peyronie disease in 2 large double-blind, randomized, placebo controlled phase 3 studies.
        J Urol. 2013; 190: 199-207
        • Levine L.A.
        • Newell M.
        • Taylor F.L.
        Penile traction therapy for treatment of Peyronie's disease: a single-center pilot study.
        J Sex Med. 2008; 5: 1468-1473
        • Levine L.A.
        • Rybak J.
        Traction therapy for men with shortened penis prior to penile prosthesis implantation: a pilot study.
        J Sex Med. 2011; 8: 2112-2117
        • Di Stasi S.M.
        • Giannantoni A.
        • Stephen R.L.
        • et al.
        A prospective, randomized study using transdermal electromotive administration of verapamil and dexamethasone for Peyronie's disease.
        J Urol. 2004; 171: 1605-1608
        • Pietsch G.
        • Anzeneder T.
        • Bruckbauer H.
        • et al.
        Superficial radiation therapy in peyronie's disease: an effective and well-tolerated therapy.
        Adv Radiat Oncol. 2018; 3: 548-551
        • Niewald M.
        • Wenzlawowicz K.V.
        • Fleckenstein J.
        • et al.
        Results of radiotherapy for Peyronie's disease.
        Int J Radiat Oncol Biol Phys. 2006; 64: 258-262
        • Mira J.G.
        • Chahbazian C.M.
        • del Regato J.A.
        The value of radiotherapy for Peyronie's disease: presentation of 56 new case studies and review of the literature.
        Int J Radiat Oncol Biol Phys. 1980; 6: 161-166
        • Katusic S.
        • Williams D.B.
        • Beard C.M.
        • et al.
        Epidemiology and clinical features of idiopathic trigeminal neuralgia and glossopharyngeal neuralgia: similarities and differences, Rochester, Minnesota, 1945-1984.
        Neuroepidemiology. 1991; 10: 276-281
        • Love S.
        • Coakham H.B.
        Trigeminal neuralgia: pathology and pathogenesis.
        Brain. 2001; 124: 2347-2360
      1. Headache Classification Committee of the International Headache Society (IHS) the international classification of headache disorders, 3rd edition.
        Cephalalgia. 2018; 38: 1-211
        • Antonini G.
        • Di Pasquale A.
        • Cruccu G.
        • et al.
        Magnetic resonance imaging contribution for diagnosing symptomatic neurovascular contact in classical trigeminal neuralgia: a blinded case-control study and meta-analysis.
        Pain. 2014; 155: 1464-1471
        • Maarbjerg S.
        • Gozalov A.
        • Olesen J.
        • et al.
        Trigeminal neuralgia--a prospective systematic study of clinical characteristics in 158 patients.
        Headache. 2014; 54: 1574-1582
        • Rockliff B.W.
        • Davis E.H.
        Controlled sequential trials of carbamazepine in trigeminal neuralgia.
        Arch Neurol. 1966; 15: 129-136
        • Nicol C.F.
        A four year double-blind study of tegretol in facial pain.
        Headache. 1969; 9: 54-57
        • Campbell F.G.
        • Graham J.G.
        • Zilkha K.J.
        Clinical trial of carbazepine (tegretol) in trigeminal neuralgia.
        J Neurol Neurosurg Psychiatry. 1966; 29: 265-267
        • Guardiani E.
        • Sadoughi B.
        • Blitzer A.
        • et al.
        A new treatment paradigm for trigeminal neuralgia using Botulinum toxin type A.
        Laryngoscope. 2014; 124: 413-417
        • Jannetta P.J.
        Microsurgical management of trigeminal neuralgia.
        Arch Neurol. 1985; 42: 800
        • Kanpolat Y.
        • Ugur H.C.
        Systematic review of ablative neurosurgical techniques for the treatment of trigeminal neuralgia.
        Neurosurgery. 2005; 57: E601
        • Nurmikko T.J.
        • Eldridge P.R.
        Trigeminal neuralgia--pathophysiology, diagnosis and current treatment.
        Br J Anaesth. 2001; 87: 117-132
        • Regis J.
        • Metellus P.
        • Hayashi M.
        • et al.
        Prospective controlled trial of gamma knife surgery for essential trigeminal neuralgia.
        J Neurosurg. 2006; 104: 913-924
        • Lucas Jr., J.T.
        • Nida A.M.
        • Isom S.
        • et al.
        Predictive nomogram for the durability of pain relief from gamma knife radiation surgery in the treatment of trigeminal neuralgia.
        Int J Radiat Oncol Biol Phys. 2014; 89: 120-126
        • Herman J.M.
        • Petit J.H.
        • Amin P.
        • et al.
        Repeat gamma knife radiosurgery for refractory or recurrent trigeminal neuralgia: treatment outcomes and quality-of-life assessment.
        Int J Radiat Oncol Biol Phys. 2004; 59: 112-116
        • Hasegawa T.
        • Kondziolka D.
        • Spiro R.
        • et al.
        Repeat radiosurgery for refractory trigeminal neuralgia.
        Neurosurgery. 2002; 50 ([discussion: 500–2]): 494-500
        • Regis J.
        • Tuleasca C.
        • Resseguier N.
        • et al.
        Long-term safety and efficacy of Gamma Knife surgery in classical trigeminal neuralgia: a 497-patient historical cohort study.
        J Neurosurg. 2016; 124: 1079-1087
        • Young B.
        • Shivazad A.
        • Kryscio R.J.
        • et al.
        Long-term outcome of high-dose gamma knife surgery in treatment of trigeminal neuralgia.
        J Neurosurg. 2013; 119: 1166-1175
        • Marshall K.
        • Chan M.D.
        • McCoy T.P.
        • et al.
        Predictive variables for the successful treatment of trigeminal neuralgia with gamma knife radiosurgery.
        Neurosurgery. 2012; 70 ([discussion: 572–3]): 566-572
        • Kondziolka D.
        • Zorro O.
        • Lobato-Polo J.
        • et al.
        Gamma Knife stereotactic radiosurgery for idiopathic trigeminal neuralgia.
        J Neurosurg. 2010; 112: 758-765
        • Smith Z.A.
        • Gorgulho A.A.
        • Bezrukiy N.
        • et al.
        Dedicated linear accelerator radiosurgery for trigeminal neuralgia: a single-center experience in 179 patients with varied dose prescriptions and treatment plans.
        Int J Radiat Oncol Biol Phys. 2011; 81: 225-231