Advertisement
Review Article| Volume 34, ISSUE 1, P29-43, February 2020

Novel Radiotherapy Technologies in the Treatment of Gastrointestinal Malignancies

Published:October 30, 2019DOI:https://doi.org/10.1016/j.hoc.2019.08.016

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Hematology/Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Shapiro J.
        • van Lanschot J.J.B.
        • Hulshof M.C.C.M.
        • et al.
        Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial.
        Lancet Oncol. 2015; 16: 1090-1098
        • Minsky B.D.
        • Pajak T.F.
        • Ginsberg R.J.
        • et al.
        INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy.
        J Clin Oncol. 2002; 20: 1167-1174
        • NCCN
        National Comprehensive Cancer Network Guidelines Version 1.2019 Esophageal and Esophagogastric Junction Cancers. National Comprehensive Cancer Network.
        (Available at:) (Accessed May 22, 2019)
        • Macdonald J.S.
        • Smalley S.R.
        • Benedetti J.
        • et al.
        Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction.
        N Engl J Med. 2001; 345: 725-730
        • Cunningham D.
        • Allum W.H.
        • Stenning S.P.
        • et al.
        Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer.
        N Engl J Med. 2006; 355: 11-20
        • Al-Batran S.-E.
        • Homann N.
        • Pauligk C.
        • et al.
        Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial.
        Lancet. 2019; 393: 1948-1957
        • Cats A.
        • Jansen E.P.M.
        • van Grieken N.C.T.
        • et al.
        Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): an international, open-label, randomised phase 3 trial.
        Lancet Oncol. 2018; 19: 616-628
        • Bang Y.-J.
        • Kim Y.-W.
        • Yang H.-K.
        • et al.
        Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial.
        Lancet. 2012; 379: 315-321
        • Lee J.
        • Lim D.H.
        • Kim S.
        • et al.
        Phase III trial comparing capecitabine plus cisplatin versus capecitabine plus cisplatin with concurrent capecitabine radiotherapy in completely resected gastric cancer with D2 lymph node dissection: the ARTIST trial.
        J Clin Oncol. 2012; 30: 268-273
        • Park S.H.
        • Zang D.Y.
        • Han B.
        • et al.
        ARTIST 2: Interim results of a phase III trial involving adjuvant chemotherapy and/or chemoradiotherapy after D2-gastrectomy in stage II/III gastric cancer (GC).
        J Clin Oncol. 2019; 37 ([abstract 4001])
        • Slagter A.E.
        • Jansen E.P.M.
        • van Laarhoven H.W.M.
        • et al.
        CRITICS-II: a multicentre randomised phase II trial of neo-adjuvant chemotherapy followed by surgery versus neo-adjuvant chemotherapy and subsequent chemoradiotherapy followed by surgery versus neo-adjuvant chemoradiotherapy followed by surgery in resectable gastric cancer.
        BMC Cancer. 2018; 18: 877
        • Kwong Y.
        • Mel A.O.
        • Wheeler G.
        • et al.
        Four-dimensional computed tomography (4DCT): A review of the current status and applications.
        J Med Imaging Radiat Oncol. 2015; 59: 545-554
        • Lin S.H.
        • Wang L.
        • Myles B.
        • et al.
        Propensity score-based comparison of long-term outcomes with 3-dimensional conformal radiotherapy vs intensity-modulated radiotherapy for esophageal cancer.
        Int J Radiat Oncol Biol Phys. 2012; 84: 1078-1085
        • Chakravarty T.
        • Crane C.H.
        • Ajani J.A.
        • et al.
        Intensity-modulated radiation therapy with concurrent chemotherapy as preoperative treatment for localized gastric adenocarcinoma.
        Int J Radiat Oncol Biol Phys. 2012; 83: 581-586
        • Wu A.J.
        • Bosch W.R.
        • Chang D.T.
        • et al.
        Expert consensus contouring guidelines for intensity modulated radiation therapy in esophageal and gastroesophageal junction cancer.
        Int J Radiat Oncol Biol Phys. 2015; 92: 911-920
        • Lin S.H.
        • Komaki R.
        • Liao Z.
        • et al.
        Proton beam therapy and concurrent chemotherapy for esophageal cancer.
        Int J Radiat Oncol Biol Phys. 2012; 83: e345-e351
        • Prayongrat A.
        • Xu C.
        • Li H.
        • et al.
        Clinical outcomes of intensity modulated proton therapy and concurrent chemotherapy in esophageal carcinoma: a single institutional experience.
        Adv Radiat Oncol. 2017; 2: 301-307
        • Lin S.H.
        • Merrell K.W.
        • Shen J.
        • et al.
        Multi-institutional analysis of radiation modality use and postoperative outcomes of neoadjuvant chemoradiation for esophageal cancer.
        Radiother Oncol. 2017; 123: 376-381
        • Fang P.
        • Shiraishi Y.
        • Verma V.
        • et al.
        Lymphocyte-sparing effect of proton therapy in patients with esophageal cancer treated with definitive chemoradiation.
        Int J Part Ther. 2018; 4: 23-32
        • Koyama S.
        • Kawanishi N.
        • Fukutomi H.
        • et al.
        Advanced carcinoma of the stomach treated with definitive proton therapy.
        Am J Gastroenterol. 1990; 85: 443-447
        • Shibuya S.
        • Takase Y.
        • Aoyagi H.
        • et al.
        Definitive proton beam radiation therapy for inoperable gastric cancer: a report of two cases.
        Radiat Med. 1991; 9: 35-40
        • Sohn T.A.
        • Yeo C.J.
        • Cameron J.L.
        • et al.
        Resected adenocarcinoma of the pancreas—616 patients: results, outcomes, and prognostic indicators.
        J Gastrointest Surg. 2000; 4: 567-579
        • Oettle H.
        • Post S.
        • Neuhaus P.
        • et al.
        Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial.
        JAMA. 2007; 297: 267-277
        • Neoptolemos J.P.
        • Stocken D.D.
        • Bassi C.
        • et al.
        Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial.
        JAMA. 2010; 304: 1073-1081
        • Neoptolemos J.P.
        • Dunn J.A.
        • Stocken D.D.
        • et al.
        Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial.
        Lancet. 2001; 358: 1576-1585
        • Abrams R.A.
        • Lillemoe K.D.
        • Piantadosi S.
        Continuing controversy over adjuvant therapy of pancreatic cancer.
        Lancet. 2001; 358: 1565-1566
        • Radiation Therapy Oncology Group
        RTOG 0848 Protocol Information.
        (Available at:) (Accessed May 28, 2019)
        • Katz M.H.G.
        • Shi Q.
        • Ahmad S.A.
        • et al.
        Preoperative modified FOLFIRINOX treatment followed by capecitabine-based chemoradiation for borderline resectable pancreatic cancer: Alliance for Clinical Trials in Oncology Trial A021101.
        JAMA Surg. 2016; 151: e161137
        • Varadhachary G.R.
        • Wolff R.A.
        • Crane C.H.
        • et al.
        Preoperative gemcitabine and cisplatin followed by gemcitabine-based chemoradiation for resectable adenocarcinoma of the pancreatic head.
        J Clin Oncol. 2008; 26: 3487-3495
        • Versteijne E.
        • van Eijck C.H.J.
        • Punt C.J.A.
        • et al.
        Preoperative radiochemotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer (PREOPANC trial): study protocol for a multicentre randomized controlled trial.
        Trials. 2016; 17: 127
        • Van Tienhoven G.
        • Versteijne E.
        • Suker M.
        • et al.
        Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer (PREOPANC-1) : A randomized, controlled, multicenter phase III trial.
        J Clin Oncol. 2018; 36: LBA4002
        • NCCN
        National Comprehensive Cancer Network guidelines version 2.2019 pancreatic adenocarcinoma.
        (Available at:) (Accessed May 28, 2019)
        • Katz M.H.G.
        • Ou F.-S.
        • Herman J.M.
        • et al.
        Alliance for clinical trials in oncology (ALLIANCE) trial A021501: preoperative extended chemotherapy vs. chemotherapy plus hypofractionated radiation therapy for borderline resectable adenocarcinoma of the head of the pancreas.
        BMC Cancer. 2017; 17: 505
        • Hammel P.
        • Huguet F.
        • van Laethem J.-L.
        • et al.
        Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: the LAP07 randomized clinical trial.
        JAMA. 2016; 315: 1844-1853
        • Crane C.H.
        • Varadhachary G.R.
        • Yordy J.S.
        • et al.
        Phase II trial of cetuximab, gemcitabine, and oxaliplatin followed by chemoradiation with cetuximab for locally advanced (T4) pancreatic adenocarcinoma: correlation of Smad4(Dpc4) immunostaining with pattern of disease progression.
        J Clin Oncol. 2011; 29: 3037-3043
        • Poon R.T.
        • Fan S.T.
        • Lo C.M.
        • et al.
        Improving survival results after resection of hepatocellular carcinoma: a prospective study of 377 patients over 10 years.
        Ann Surg. 2001; 234: 63-70
        • Bruix J.
        • Llovet J.M.
        Prognostic prediction and treatment strategy in hepatocellular carcinoma.
        Hepatology. 2002; 35: 519-524
        • NCCN
        National Comprehensive Cancer Network Guidelines: Hepatobiliary Cancers Version 2.2019.
        (Available at:) (Accessed May 28, 2019)
        • Mornex F.
        • Girard N.
        • Beziat C.
        • et al.
        Feasibility and efficacy of high-dose three-dimensional-conformal radiotherapy in cirrhotic patients with small-size hepatocellular carcinoma non-eligible for curative therapies--mature results of the French Phase II RTF-1 trial.
        Int J Radiat Oncol Biol Phys. 2006; 66: 1152-1158
        • Ben-Josef E.
        • Normolle D.
        • Ensminger W.D.
        • et al.
        Phase II trial of high-dose conformal radiation therapy with concurrent hepatic artery floxuridine for unresectable intrahepatic malignancies.
        J Clin Oncol. 2005; 23: 8739-8747
        • Skinner H.D.
        • Sharp H.J.
        • Kaseb A.O.
        • et al.
        Radiation treatment outcomes for unresectable hepatocellular carcinoma.
        Acta Oncol. 2011; 50: 1191-1198
        • Rahnemai-Azar A.A.
        • Weisbrod A.
        • Dillhoff M.
        • et al.
        Intrahepatic cholangiocarcinoma: molecular markers for diagnosis and prognosis.
        Surg Oncol. 2017; 26: 125-137
        • Weber S.M.
        • Ribero D.
        • O’Reilly E.M.
        • et al.
        Intrahepatic cholangiocarcinoma: expert consensus statement.
        HPB (Oxford). 2015; 17: 669-680
        • Tao R.
        • Krishnan S.
        • Bhosale P.R.
        • et al.
        Ablative radiotherapy doses lead to a substantial prolongation of survival in patients with inoperable intrahepatic cholangiocarcinoma: a retrospective dose response analysis.
        J Clin Oncol. 2016; 34: 219-226
        • Gomez D.R.
        • Blumenschein G.R.
        • Lee J.J.
        • et al.
        Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study.
        Lancet Oncol. 2016; 17: 1672-1682
        • Kopetz S.
        • Chang G.J.
        • Overman M.J.
        • et al.
        Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy.
        J Clin Oncol. 2009; 27: 3677-3683
        • Hong T.S.
        • Wo J.Y.
        • Borger D.R.
        • et al.
        Phase II study of proton-based stereotactic body radiation therapy for liver metastases: importance of tumor genotype.
        J Natl Cancer Inst. 2017; 109https://doi.org/10.1093/jnci/djx031
        • McPartlin A.
        • Swaminath A.
        • Wang R.
        • et al.
        Long-term outcomes of phase 1 and 2 studies of SBRT for hepatic colorectal metastases.
        Int J Radiat Oncol Biol Phys. 2017; 99: 388-395
        • Wagman R.
        • Yorke E.
        • Ford E.
        • et al.
        Respiratory gating for liver tumors: use in dose escalation.
        Int J Radiat Oncol Biol Phys. 2003; 55: 659-668
        • Shirato H.
        • Shimizu S.
        • Kitamura K.
        • et al.
        Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor.
        Int J Radiat Oncol Biol Phys. 2000; 48: 435-442
        • Eccles C.L.
        • Dawson L.A.
        • Moseley J.L.
        • et al.
        Interfraction liver shape variability and impact on GTV position during liver stereotactic radiotherapy using abdominal compression.
        Int J Radiat Oncol Biol Phys. 2011; 80: 938-946
        • Eccles C.
        • Brock K.K.
        • Bissonnette J.-P.
        • et al.
        Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy.
        Int J Radiat Oncol Biol Phys. 2006; 64: 751-759
        • van der Horst A.
        • Lens E.
        • Wognum S.
        • et al.
        Limited role for biliary stent as surrogate fiducial marker in pancreatic cancer: stent and intratumoral fiducials compared.
        Int J Radiat Oncol Biol Phys. 2014; 89: 641-648
        • Rosenberg S.A.
        • Henke L.E.
        • Shaverdian N.
        • et al.
        A multi-institutional experience of MR-guided liver stereotactic body radiation therapy.
        Adv Radiat Oncol. 2019; 4: 142-149
        • Yovino S.
        • Poppe M.
        • Jabbour S.
        • et al.
        Intensity-modulated radiation therapy significantly improves acute gastrointestinal toxicity in pancreatic and ampullary cancers.
        Int J Radiat Oncol Biol Phys. 2011; 79: 158-162
        • Colbert L.E.
        • Moningi S.
        • Chadha A.
        • et al.
        Dose escalation with an IMRT technique in 15 to 28 fractions is better tolerated than standard doses of 3DCRT for LAPC.
        Adv Radiat Oncol. 2017; 2: 403-415
        • Goodman K.A.
        • Regine W.F.
        • Dawson L.A.
        • et al.
        Radiation Therapy Oncology Group consensus panel guidelines for the delineation of the clinical target volume in the postoperative treatment of pancreatic head cancer.
        Int J Radiat Oncol Biol Phys. 2012; 83: 901-908
        • Bae S.H.
        • Jang W.I.
        • Park H.C.
        Intensity-modulated radiotherapy for hepatocellular carcinoma: dosimetric and clinical results.
        Oncotarget. 2017; 8: 59965-59976
        • Moningi S.
        • Dholakia A.S.
        • Raman S.P.
        • et al.
        The role of stereotactic body radiation therapy for pancreatic cancer: a single-institution experience.
        Ann Surg Oncol. 2015; 22: 2352-2358
        • Nakayama H.
        • Sugahara S.
        • Tokita M.
        • et al.
        Proton beam therapy for hepatocellular carcinoma: the University of Tsukuba experience.
        Cancer. 2009; 115: 5499-5506
        • Bush D.A.
        • Kayali Z.
        • Grove R.
        • et al.
        The safety and efficacy of high-dose proton beam radiotherapy for hepatocellular carcinoma: a phase 2 prospective trial.
        Cancer. 2011; 117: 3053-3059
        • Hong T.S.
        • Wo J.Y.
        • Yeap B.Y.
        • et al.
        Multi-institutional phase II study of high-dose hypofractionated proton beam therapy in patients with localized, unresectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma.
        J Clin Oncol. 2016; 34: 460-468
        • NRG
        Clinical Trials.Gov. National Radiotherapy Group (NRG) GI003.
        (Available at:) (Accessed May 21, 2019)
        • Hong T.S.
        • Ryan D.P.
        • Blaszkowsky L.S.
        • et al.
        Phase I study of preoperative short-course chemoradiation with proton beam therapy and capecitabine for resectable pancreatic ductal adenocarcinoma of the head.
        Int J Radiat Oncol Biol Phys. 2011; 79: 151-157
        • Hong T.S.
        • Ryan D.P.
        • Borger D.R.
        • et al.
        A phase 1/2 and biomarker study of preoperative short course chemoradiation with proton beam therapy and capecitabine followed by early surgery for resectable pancreatic ductal adenocarcinoma.
        Int J Radiat Oncol Biol Phys. 2014; 89: 830-838
        • Nichols R.C.
        • George T.J.
        • Zaiden R.A.
        • et al.
        Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity.
        Acta Oncol. 2013; 52: 498-505
        • Takatori K.
        • Terashima K.
        • Yoshida R.
        • et al.
        Upper gastrointestinal complications associated with gemcitabine-concurrent proton radiotherapy for inoperable pancreatic cancer.
        J Gastroenterol. 2014; 49: 1074-1080
        • Sauer R.
        • Liersch T.
        • Merkel S.
        • et al.
        Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years.
        J Clin Oncol. 2012; 30: 1926-1933
        • NCCN
        National Comprehensive Cancer Network guidelines version 1.2019 rectal cancer. National Comprehensive Cancer Network.
        (Available at:) (Accessed April 18, 2019)
        • Ngan S.Y.
        • Burmeister B.
        • Fisher R.J.
        • et al.
        Randomized trial of short-course radiotherapy versus long-course chemoradiation comparing rates of local recurrence in patients with T3 rectal cancer: Trans-Tasman Radiation Oncology Group trial 01.04.
        J Clin Oncol. 2012; 30: 3827-3833
        • Bujko K.
        • Nowacki M.P.
        • Nasierowska-Guttmejer A.
        • et al.
        Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer.
        Br J Surg. 2006; 93: 1215-1223
        • Erlandsson J.
        • Holm T.
        • Pettersson D.
        • et al.
        Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm III): a multicentre, randomised, non-blinded, phase 3, non-inferiority trial.
        Lancet Oncol. 2017; 18: 336-346
        • Nilsson P.J.
        • van Etten B.
        • Hospers G.A.P.
        • et al.
        Short-course radiotherapy followed by neo-adjuvant chemotherapy in locally advanced rectal cancer--the RAPIDO trial.
        BMC Cancer. 2013; 13: 279
        • Garcia-Aguilar J.
        • Chow O.S.
        • Smith D.D.
        • et al.
        Effect of adding mFOLFOX6 after neoadjuvant chemoradiation in locally advanced rectal cancer: a multicentre, phase 2 trial.
        Lancet Oncol. 2015; 16: 957-966
        • Schrag D.
        • Weiser M.R.
        • Goodman K.A.
        • et al.
        Neoadjuvant chemotherapy without routine use of radiation therapy for patients with locally advanced rectal cancer: a pilot trial.
        J Clin Oncol. 2014; 32: 513-518
        • van der Valk M.J.M.
        • Hilling D.E.
        • Bastiaannet E.
        • et al.
        Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study.
        Lancet. 2018; 391: 2537-2545
        • Ajani J.A.
        • Winter K.A.
        • Gunderson L.L.
        • et al.
        Fluorouracil, mitomycin, and radiotherapy vs fluorouracil, cisplatin, and radiotherapy for carcinoma of the anal canal: a randomized controlled trial.
        JAMA. 2008; 299: 1914-1921
        • Glynne-Jones R.
        • Kadalayil L.
        • Meadows H.M.
        • et al.
        Tumour- and treatment-related colostomy rates following mitomycin C or cisplatin chemoradiation with or without maintenance chemotherapy in squamous cell carcinoma of the anus in the ACT II trial.
        Ann Oncol. 2014; 25: 1616-1622
        • Eng C.
        • Chang G.J.
        • You Y.N.
        • et al.
        Long-term results of weekly/daily cisplatin-based chemoradiation for locally advanced squamous cell carcinoma of the anal canal.
        Cancer. 2013; 119: 3769-3775
        • Kachnic L.A.
        • Winter K.
        • Myerson R.J.
        • et al.
        RTOG 0529: a phase 2 evaluation of dose-painted intensity modulated radiation therapy in combination with 5-fluorouracil and mitomycin-C for the reduction of acute morbidity in carcinoma of the anal canal.
        Int J Radiat Oncol Biol Phys. 2013; 86: 27-33
        • PLATO
        International Standard Randomised Controlled Trials Number (ISRCTN) Registry. PLATO—Personalising anal cancer radiotherapy dose.
        (Available at:) (Accessed May 21, 2019)
        • Hong T.S.
        • Moughan J.
        • Garofalo M.C.
        • et al.
        NRG Oncology Radiation Therapy Oncology Group 0822: a phase 2 study of preoperative chemoradiation therapy using intensity modulated radiation therapy in combination with capecitabine and oxaliplatin for patients with locally advanced rectal cancer.
        Int J Radiat Oncol Biol Phys. 2015; 93: 29-36
        • Berman A.
        • Both S.
        • Sharkoski T.
        Proton reirradiation of recurrent rectal cancer: dosimetric comparison, toxicities, and preliminary outcomes.
        Int J Part Ther. 2014; 1: 2-13
        • Grandhi N.
        • Mohiuddin J.
        • Plastaras J.
        Outcomes of pencil beam scanning proton therapy for anal cancer: a single institution study.
        Int J Radiat Oncol Biol Phys. 2019; 103: E9
      1. Available at: https://ascopubs.org/doi/full/10.1200/jco.2012.44.1659.

      2. Available at: https://www.tandfonline.com/doi/full/10.3109/0284186X.2013.820342.

        • Yoon S.M.
        • Lim Y.S.
        • Park M.J.
        • et al.
        Stereotactic body radiation therapy as an alternative treatment for small hepatocellular carcinoma.
        PLoS One. 2013; 8: e79854
      3. Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/cncr.24059.

      4. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0360-3016(14)03457-9.

      5. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21658854.