Advertisement
Review Article| Volume 21, ISSUE 6, P985-1006, December 2007

Molecular Pathogenesis of Multiple Myeloma

      Several genetic mechanisms underlying the pathogenesis of multiple myeloma have been elucidated in the past decade. In particular, the presence of two distinct karyotypic patterns, that identify two patient groups and drive different pathogenetic and prognostic paths in the development of myeloma, have been identified, and the role of reciprocal chromosomal translocations and cyclin dysregulation have been identified. Despite this progress, several questions of critical importance remain to be addressed for the understanding of the pathogenesis of multiple myeloma. For example, little is known about the role of the primary events, including cyclin D overexpression and multiple myeloma set domain activity in the early pathogenesis of the disease. The additional lesions that promote the evolution of monoclonal gammopathy of undetermined significance to multiple myeloma (MM) and, within MM, the progression toward a more aggressive and proliferative disease is only starting to emerge. The heterotypic relationship between the stroma and the MM plasma cells also has not been fully explored. The understanding of the biology of MM cancer stem cells and of the pathways driving their maintenance, proliferation, and differentiation is still in its infancy. Recent and ongoing high-resolution genomic studies are leading the way toward a more refined and conclusive understanding of this disease.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Hematology/Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mitsiades C.S.
        • Mitsiades N.
        • Munshi N.C.
        • et al.
        Focus on multiple myeloma.
        Cancer Cell. 2004; 6: 439-444
        • Kyle R.A.
        • Rajkumar S.V.
        Monoclonal gammopathies of undetermined significance: a review.
        Immunol Rev. 2003; 194: 112-139
        • Kyle R.A.
        • Rajkumar S.V.
        Multiple myeloma.
        N Engl J Med. 2004; 351: 1860-1873
        • Anderson K.C.
        • Shaughnessy Jr., J.D.
        • Barlogie B.
        • et al.
        Multiple myeloma.
        Hematology Am Soc Hematol Educ Program. 2002; : 214-240
        • Kuehl W.M.
        • Bergsagel P.L.
        Multiple myeloma: evolving genetic events and host interactions.
        Nat Rev Cancer. 2002; 2: 175-187
        • Richardson P.G.
        • Barlogie B.
        • Berenson J.
        • et al.
        Clinical factors predictive of outcome with bortezomib in patients with relapsed, refractory multiple myeloma.
        Blood. 2005; 106: 2977-2981
        • Richardson P.G.
        • Mitsiades C.S.
        • Hideshima T.
        • et al.
        Novel biological therapies for the treatment of multiple myeloma.
        Best Pract Res Clin Haematol. 2005; 18: 619-634
        • Barlogie B.
        • Shaughnessy J.
        • Tricot G.
        • et al.
        Treatment of multiple myeloma.
        Blood. 2004; 103: 20-32
        • Bergsagel P.L.
        • Kuehl W.M.
        • Zhan F.
        • et al.
        Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma.
        Blood. 2005; 106: 296-303
        • Carrasco D.R.
        • Tonon G.
        • Huang Y.
        • et al.
        High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients.
        Cancer Cell. 2006; 9: 313-325
        • Zhan F.
        • Huang Y.
        • Colla S.
        • et al.
        The molecular classification of multiple myeloma.
        Blood. 2006; 108: 2020-2028
        • Smadja N.V.
        • Fruchart C.
        • Isnard F.
        • et al.
        Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases.
        Leukemia. 1998; 12: 960-969
        • Pui C.H.
        • Relling M.V.
        • Downing J.R.
        Acute lymphoblastic leukemia.
        N Engl J Med. 2004; 350: 1535-1548
        • Sawyer J.R.
        • Waldron J.A.
        • Jagannath S.
        • et al.
        Cytogenetic findings in 200 patients with multiple myeloma.
        Cancer Genet Cytogenet. 1995; 82: 41-49
        • Lai J.L.
        • Zandecki M.
        • Mary J.Y.
        • et al.
        Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis.
        Blood. 1995; 85: 2490-2497
        • Smadja N.V.
        • Bastard C.
        • Brigaudeau C.
        • et al.
        Hypodiploidy is a major prognostic factor in multiple myeloma.
        Blood. 2001; 98: 2229-2238
        • Fonseca R.
        • Debes-Marun C.S.
        • Picken E.B.
        • et al.
        The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma.
        Blood. 2003; 102: 2562-2567
        • Chng W.J.
        • Van Wier S.A.
        • Ahmann G.J.
        • et al.
        A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS.
        Blood. 2005; 106: 2156-2161
        • Chng W.J.
        • Winkler J.M.
        • Greipp P.R.
        • et al.
        Ploidy status rarely changes in myeloma patients at disease progression.
        Leuk Res. 2006; 30: 266-271
        • Brunet J.P.
        • Tamayo P.
        • Golub T.R.
        • et al.
        Metagenes and molecular pattern discovery using matrix factorization.
        Proc Natl Acad Sci U S A. 2004; 101: 4164-4169
        • Bergsagel P.L.
        • Kuehl W.M.
        Chromosome translocations in multiple myeloma.
        Oncogene. 2001; 20: 5611-5622
        • Bergsagel P.L.
        • Chesi M.
        • Nardini E.
        • et al.
        Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma.
        Proc Natl Acad Sci U S A. 1996; 93: 13931-13936
        • Debes-Marun C.S.
        • Dewald G.W.
        • Bryant S.
        • et al.
        Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma.
        Leukemia. 2003; 17: 427-436
        • Seto M.
        • Yamamoto K.
        • Iida S.
        • et al.
        Gene rearrangement and overexpression of PRAD1 in lymphoid malignancy with t(11;14)(q13;q32) translocation.
        Oncogene. 1992; 7: 1401-1406
        • Chesi M.
        • Bergsagel P.L.
        • Brents L.A.
        • et al.
        Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines.
        Blood. 1996; 88: 674-681
        • Akiyama N.
        • Tsuruta H.
        • Sasaki H.
        • et al.
        Messenger RNA levels of five genes located at chromosome 11q13 in B-cell tumors with chromosome translocation t(11;14)(q13;q32).
        Cancer Res. 1994; 54: 377-379
        • Kobayashi H.
        • Saito H.
        • Kitano K.
        • et al.
        Overexpression of the PRAD1 oncogene in a patient with multiple myeloma and t(11;14)(q13;q32).
        Acta Haematol. 1995; 94: 199-203
        • Gabrea A.
        • Bergsagel P.L.
        • Chesi M.
        • et al.
        Insertion of excised IgH switch sequences causes overexpression of cyclin D1 in a myeloma tumor cell.
        Mol Cell. 1999; 3: 119-123
        • Shaughnessy Jr., J.
        • Gabrea A.
        • Qi Y.
        • et al.
        Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma.
        Blood. 2001; 98: 217-223
        • Chesi M.
        • Nardini E.
        • Brents L.A.
        • et al.
        Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3.
        Nat Genet. 1997; 16: 260-264
        • Richelda R.
        • Ronchetti D.
        • Baldini L.
        • et al.
        A novel chromosomal translocation t(4; 14)(p16.3; q32) in multiple myeloma involves the fibroblast growth-factor receptor 3 gene.
        Blood. 1997; 90: 4062-4070
        • Chesi M.
        • Nardini E.
        • Lim R.S.
        • et al.
        The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts.
        Blood. 1998; 92: 3025-3034
        • Chesi M.
        • Brents L.A.
        • Ely S.A.
        • et al.
        Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma.
        Blood. 2001; 97: 729-736
        • Intini D.
        • Baldini L.
        • Fabris S.
        • et al.
        Analysis of FGFR3 gene mutations in multiple myeloma patients with t(4;14).
        Br J Haematol. 2001; 114: 362-364
        • Chesi M.
        • Bergsagel P.L.
        • Shonukan O.O.
        • et al.
        Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma.
        Blood. 1998; 91: 4457-4463
        • Hanamura I.
        • Iida S.
        • Akano Y.
        • et al.
        Ectopic expression of MAFB gene in human myeloma cells carrying (14;20)(q32;q11) chromosomal translocations.
        Jpn J Cancer Res. 2001; 92: 638-644
        • Smadja N.V.
        • Leroux D.
        • Soulier J.
        • et al.
        Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases.
        Genes Chromosomes Cancer. 2003; 38: 234-239
        • Fonseca R.
        • Bailey R.J.
        • Ahmann G.J.
        • et al.
        Genomic abnormalities in monoclonal gammopathy of undetermined significance.
        Blood. 2002; 100: 1417-1424
        • Avet-Loiseau H.
        • Facon T.
        • Daviet A.
        • et al.
        14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone du Myelome.
        Cancer Res. 1999; 59: 4546-4550
        • Kaufmann H.
        • Ackermann J.
        • Baldia C.
        • et al.
        Both IGH translocations and chromosome 13q deletions are early events in monoclonal gammopathy of undetermined significance and do not evolve during transition to multiple myeloma.
        Leukemia. 2004; 18: 1879-1882
        • Hardin J.
        • Waddell M.
        • Page C.D.
        • et al.
        Evaluation of multiple models to distinguish closely related forms of disease using DNA microarray data: an application to multiple myeloma.
        Stat Appl Genet Mol Biol. 2004; 3 ([article10])
        • Zhan F.
        • Hardin J.
        • Kordsmeier B.
        • et al.
        Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells.
        Blood. 2002; 99: 1745-1757
        • Zhan F.
        • Barlogie B.
        • Arzoumanian V.
        • et al.
        Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis.
        Blood. 2007; 109: 1692-1700
        • Paquette R.L.
        • Berenson J.
        • Lichtenstein A.
        • et al.
        Oncogenes in multiple myeloma: point mutation of N-ras.
        Oncogene. 1990; 5: 1659-1663
        • Neri A.
        • Murphy J.P.
        • Cro L.
        • et al.
        Ras oncogene mutation in multiple myeloma.
        J Exp Med. 1989; 170: 1715-1725
        • Bezieau S.
        • Devilder M.C.
        • Avet-Loiseau H.
        • et al.
        High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis.
        Hum Mutat. 2001; 18: 212-224
        • Liu P.
        • Leong T.
        • Quam L.
        • et al.
        Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group Phase III Trial.
        Blood. 1996; 88: 2699-2706
        • Corradini P.
        • Ladetto M.
        • Voena C.
        • et al.
        Mutational activation of N- and K-ras oncogenes in plasma cell dyscrasias.
        Blood. 1993; 81: 2708-2713
        • Rasmussen T.
        • Kuehl M.
        • Lodahl M.
        • et al.
        Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors.
        Blood. 2005; 105: 317-323
        • Avet-Loiseau H.
        • Facon T.
        • Grosbois B.
        • et al.
        Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation.
        Blood. 2002; 99: 2185-2191
        • Keats J.J.
        • Reiman T.
        • Maxwell C.A.
        • et al.
        In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression.
        Blood. 2003; 101: 1520-1529
        • Malgeri U.
        • Baldini L.
        • Perfetti V.
        • et al.
        Detection of t(4;14)(p16.3;q32) chromosomal translocation in multiple myeloma by reverse transcription-polymerase chain reaction analysis of IGH-MMSET fusion transcripts.
        Cancer Res. 2000; 60: 4058-4061
        • Agnelli L.
        • Fabris S.
        • Bicciato S.
        • et al.
        Upregulation of translational machinery and distinct genetic subgroups characterise hyperdiploidy in multiple myeloma.
        Br J Haematol. 2007; 136: 565-573
        • Chng W.J.
        • Kumar S.
        • Vanwier S.
        • et al.
        Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling.
        Cancer Res. 2007; 67: 2982-2989
        • Fassas A.B.
        • Spencer T.
        • Sawyer J.
        • et al.
        Both hypodiploidy and deletion of chromosome 13 independently confer poor prognosis in multiple myeloma.
        Br J Haematol. 2002; 118: 1041-1047
        • Calasanz M.J.
        • Cigudosa J.C.
        • Odero M.D.
        • et al.
        Hypodiploidy and 22q11 rearrangements at diagnosis are associated with poor prognosis in patients with multiple myeloma.
        Br J Haematol. 1997; 98: 418-425
        • Chng W.J.
        • Santana-Davila R.
        • Van Wier S.A.
        • et al.
        Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IgH translocations.
        Leukemia. 2006; 20: 807-813
        • Chng W.J.
        • Ketterling R.P.
        • Fonseca R.
        Analysis of genetic abnormalities provides insights into genetic evolution of hyperdiploid myeloma.
        Genes Chromosomes Cancer. 2006; 45: 1111-1120
        • Potter M.
        • Wiener F.
        Plasmacytomagenesis in mice: model of neoplastic development dependent upon chromosomal translocations.
        Carcinogenesis. 1992; 13: 1681-1697
        • Fonseca R.
        • Blood E.A.
        • Oken M.M.
        • et al.
        Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients.
        Blood. 2002; 99: 3735-3741
        • Avet-Loiseau H.
        • Li J.Y.
        • Facon T.
        • et al.
        High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies.
        Cancer Res. 1998; 58: 5640-5645
        • Keats J.J.
        • Reiman T.
        • Belch A.R.
        • et al.
        Ten years and counting: so what do we know about t(4;14)(p16;q32) multiple myeloma.
        Leuk Lymphoma. 2006; 47: 2289-2300
        • Keats J.J.
        • Maxwell C.A.
        • Taylor B.J.
        • et al.
        Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients.
        Blood. 2005; 105: 4060-4069
        • Santra M.
        • Zhan F.
        • Tian E.
        • et al.
        A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript.
        Blood. 2003; 101: 2374-2376
        • Stewart J.P.
        • Thompson A.
        • Santra M.
        • et al.
        Correlation of TACC3, FGFR3, MMSET and p21 expression with the t(4;14)(p16.3;q32) in multiple myeloma.
        Br J Haematol. 2004; 126: 72-76
        • Hudlebusch H.R.
        • Theilgaard-Monch K.
        • Lodahl M.
        • et al.
        Identification of ID-1 as a potential target gene of MMSET in multiple myeloma.
        Br J Haematol. 2005; 130: 700-708
        • Plowright E.E.
        • Li Z.
        • Bergsagel P.L.
        • et al.
        Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis.
        Blood. 2000; 95: 992-998
        • Ronchetti D.
        • Greco A.
        • Compasso S.
        • et al.
        Deregulated FGFR3 mutants in multiple myeloma cell lines with t(4;14): comparative analysis of Y373C, K650E and the novel G384D mutations.
        Oncogene. 2001; 20: 3553-3562
        • Li Z.
        • Zhu Y.X.
        • Plowright E.E.
        • et al.
        The myeloma-associated oncogene fibroblast growth factor receptor 3 is transforming in hematopoietic cells.
        Blood. 2001; 97: 2413-2419
        • Grand E.K.
        • Chase A.J.
        • Heath C.
        • et al.
        Targeting FGFR3 in multiple myeloma: inhibition of t(4;14)-positive cells by SU5402 and PD173074.
        Leukemia. 2004; 18: 962-966
        • Trudel S.
        • Ely S.
        • Farooqi Y.
        • et al.
        Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma.
        Blood. 2004; 103: 3521-3528
        • Trudel S.
        • Li Z.H.
        • Wei E.
        • et al.
        CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma.
        Blood. 2005; 105: 2941-2948
        • Trudel S.
        • Stewart A.K.
        • Rom E.
        • et al.
        The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells.
        Blood. 2006; 107: 4039-4046
        • Todoerti K.
        • Ronchetti D.
        • Agnelli L.
        • et al.
        Transcription repression activity is associated with the type I isoform of the MMSET gene involved in t(4;14) in multiple myeloma.
        Br J Haematol. 2005; 131: 214-218
        • Rosati R.
        • La Starza R.
        • Veronese A.
        • et al.
        NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15).
        Blood. 2002; 99: 3857-3860
        • Angrand P.O.
        • Apiou F.
        • Stewart A.F.
        • et al.
        NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines.
        Genomics. 2001; 74: 79-88
        • Tonon G.
        • Wong K.K.
        • Maulik G.
        • et al.
        High-resolution genomic profiles of human lung cancer.
        Proc Natl Acad Sci U S A. 2005; 102: 9625-9630
        • Jaju R.J.
        • Fidler C.
        • Haas O.A.
        • et al.
        A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia.
        Blood. 2001; 98: 1264-1267
        • Fonseca R.
        • Blood E.
        • Rue M.
        • et al.
        Clinical and biologic implications of recurrent genomic aberrations in myeloma.
        Blood. 2003; 101: 4569-4575
        • Avet-Loiseau H.
        • Attal M.
        • Moreau P.
        • et al.
        Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome.
        Blood. 2007; 109: 3489-3495
        • Chang H.
        • Sloan S.
        • Li D.
        • et al.
        The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant.
        Br J Haematol. 2004; 125: 64-68
        • Winkler J.M.
        • Greipp P.
        • Fonseca R.
        t(4;14)(p16.3;q32) is strongly associated with a shorter survival in myeloma patients.
        Br J Haematol. 2003; 120: 170-171
        • Moreau P.
        • Facon T.
        • Leleu X.
        • et al.
        Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy.
        Blood. 2002; 100: 1579-1583
        • Rasmussen T.
        • Knudsen L.M.
        • Dahl I.M.
        • et al.
        C-MAF oncogene dysregulation in multiple myeloma: frequency and biological relevance.
        Leuk Lymphoma. 2003; 44: 1761-1766
        • Hurt E.M.
        • Wiestner A.
        • Rosenwald A.
        • et al.
        Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma.
        Cancer Cell. 2004; 5: 191-199
        • Lombardi L.
        • Poretti G.
        • Mattioli M.
        • et al.
        Molecular characterization of human multiple myeloma cell lines by integrative genomics: insights into the biology of the disease.
        Genes Chromosomes Cancer. 2007; 46: 226-238
        • Suzuki A.
        • Iida S.
        • Kato-Uranishi M.
        • et al.
        ARK5 is transcriptionally regulated by the Large-MAF family and mediates IGF-1-induced cell invasion in multiple myeloma: ARK5 as a new molecular determinant of malignant multiple myeloma.
        Oncogene. 2005; 24: 6936-6944
        • Tian E.
        • Zhan F.
        • Walker R.
        • et al.
        The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma.
        N Engl J Med. 2003; 349: 2483-2494
        • Robbiani D.F.
        • Colon K.
        • Ely S.
        • et al.
        Osteopontin dysregulation and lytic bone lesions in multiple myeloma.
        Hematol Oncol. 2007; 25: 16-20
        • Largo C.
        • Saez B.
        • Alvarez S.
        • et al.
        Multiple myeloma primary cells show a highly rearranged unbalanced genome with amplifications and homozygous deletions irrespective of the presence of immunoglobulin-related chromosome translocations.
        Haematologica. 2007; 92: 795-802
        • Largo C.
        • Alvarez S.
        • Saez B.
        • et al.
        Identification of overexpressed genes in frequently gained/amplified chromosome regions in multiple myeloma.
        Haematologica. 2006; 91: 184-191
        • Walker B.A.
        • Leone P.E.
        • Jenner M.W.
        • et al.
        Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma.
        Blood. 2006; 108: 1733-1743
        • Whitfield M.L.
        • George L.K.
        • Grant G.D.
        • et al.
        Common markers of proliferation.
        Nat Rev Cancer. 2006; 6: 99-106
        • Mulligan G.
        • Mitsiades C.
        • Bryant B.
        • et al.
        Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib.
        Blood. 2007; 109: 3177-3188
        • Avet-Loiseau H.
        • Andree-Ashley L.E.
        • Moore 2nd, D.
        • et al.
        Molecular cytogenetic abnormalities in multiple myeloma and plasma cell leukemia measured using comparative genomic hybridization.
        Genes Chromosomes Cancer. 1997; 19: 124-133
        • Sawyer J.R.
        • Tricot G.
        • Mattox S.
        • et al.
        Jumping translocations of chromosome 1q in multiple myeloma: evidence for a mechanism involving decondensation of pericentromeric heterochromatin.
        Blood. 1998; 91: 1732-1741
        • Gutierrez N.C.
        • Garcia J.L.
        • Hernandez J.M.
        • et al.
        Prognostic and biologic significance of chromosomal imbalances assessed by comparative genomic hybridization in multiple myeloma.
        Blood. 2004; 104: 2661-2666
        • Cremer F.W.
        • Bila J.
        • Buck I.
        • et al.
        Delineation of distinct subgroups of multiple myeloma and a model for clonal evolution based on interphase cytogenetics.
        Genes Chromosomes Cancer. 2005; 44: 194-203
        • Fonseca R.
        • Van Wier S.A.
        • Chng W.J.
        • et al.
        Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma.
        Leukemia. 2006; 20: 2034-2040
        • Chang H.
        • Qi X.
        • Trieu Y.
        • et al.
        Multiple myeloma patients with CKS1B gene amplification have a shorter progression-free survival post-autologous stem cell transplantation.
        Br J Haematol. 2006; 135: 486-491
        • Le Baccon P.
        • Leroux D.
        • Dascalescu C.
        • et al.
        Novel evidence of a role for chromosome 1 pericentric heterochromatin in the pathogenesis of B-cell lymphoma and multiple myeloma.
        Genes Chromosomes Cancer. 2001; 32: 250-264
        • Sawyer J.R.
        • Tricot G.
        • Lukacs J.L.
        • et al.
        Genomic instability in multiple myeloma: evidence for jumping segmental duplications of chromosome arm 1q.
        Genes Chromosomes Cancer. 2005; 42: 95-106
        • Chang H.
        • Yeung J.
        • Xu W.
        • et al.
        Significant increase of CKS1B amplification from monoclonal gammopathy of undetermined significance to multiple myeloma and plasma cell leukaemia as demonstrated by interphase fluorescence in situ hybridisation.
        Br J Haematol. 2006; 134: 613-615
        • Wu K.L.
        • Beverloo B.
        • Lokhorst H.M.
        • et al.
        Abnormalities of chromosome 1p/q are highly associated with chromosome 13/13q deletions and are an adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma.
        Br J Haematol. 2007; 136: 615-623
        • Shaughnessy Jr., J.D.
        • Zhan F.
        • Burington B.E.
        • et al.
        A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1.
        Blood. 2007; 109: 2276-2284
        • Zhan F.
        • Colla S.
        • Wu X.
        • et al.
        CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms.
        Blood. 2007; 109: 4995-5001
        • Tricot G.
        • Barlogie B.
        • Jagannath S.
        • et al.
        Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities.
        Blood. 1995; 86: 4250-4256
        • Avet-Louseau H.
        • Daviet A.
        • Sauner S.
        • et al.
        Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13.
        Br J Haematol. 2000; 111: 1116-1117
        • Fonseca R.
        • Oken M.M.
        • Harrington D.
        • et al.
        Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy.
        Leukemia. 2001; 15: 981-986
        • Shaughnessy J.
        • Tian E.
        • Sawyer J.
        • et al.
        High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH.
        Blood. 2000; 96: 1505-1511
        • Facon T.
        • Avet-Loiseau H.
        • Guillerm G.
        • et al.
        Chromosome 13 abnormalities identified by FISH analysis and serum beta2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy.
        Blood. 2001; 97: 1566-1571
        • Zojer N.
        • Konigsberg R.
        • Ackermann J.
        • et al.
        Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization.
        Blood. 2000; 95: 1925-1930
        • Konigsberg R.
        • Ackermann J.
        • Kaufmann H.
        • et al.
        Deletions of chromosome 13q in monoclonal gammopathy of undetermined significance.
        Leukemia. 2000; 14: 1975-1979
        • Fonseca R.
        • Oken M.M.
        • Greipp P.R.
        The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance.
        Blood. 2001; 98: 1271-1272
        • Mertens D.
        • Wolf S.
        • Schroeter P.
        • et al.
        Down-regulation of candidate tumor suppressor genes within chromosome band 13q14.3 is independent of the DNA methylation pattern in B-cell chronic lymphocytic leukemia.
        Blood. 2002; 99: 4116-4121
        • Elnenaei M.O.
        • Hamoudi R.A.
        • Swansbury J.
        • et al.
        Delineation of the minimal region of loss at 13q14 in multiple myeloma.
        Genes Chromosomes Cancer. 2003; 36: 99-106
        • Desikan R.
        • Barlogie B.
        • Sawyer J.
        • et al.
        Results of high-dose therapy for 1000 patients with multiple myeloma: durable complete remissions and superior survival in the absence of chromosome 13 abnormalities.
        Blood. 2000; 95: 4008-4010
        • Fonseca R.
        • Harrington D.
        • Oken M.M.
        • et al.
        Biological and prognostic significance of interphase fluorescence in situ hybridization detection of chromosome 13 abnormalities (delta13) in multiple myeloma: an eastern cooperative oncology group study.
        Cancer Res. 2002; 62: 715-720
        • Shaughnessy J.
        • Jacobson J.
        • Sawyer J.
        • et al.
        Continuous absence of metaphase-defined cytogenetic abnormalities, especially of chromosome 13 and hypodiploidy, ensures long-term survival in multiple myeloma treated with total therapy I: interpretation in the context of global gene expression.
        Blood. 2003; 101: 3849-3856
        • Gutierrez N.C.
        • Castellanos M.V.
        • Martin M.L.
        • et al.
        Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis.
        Leukemia. 2007; 21: 143-150
        • Wullich B.
        • Riedinger S.
        • Brinck U.
        • et al.
        Evidence for gains at 15q and 20q in brain metastases of prostate cancer.
        Cancer Genet Cytogenet. 2004; 154: 119-123
        • Fujita Y.
        • Sakakura C.
        • Shimomura K.
        • et al.
        Chromosome arm 20q gains and other genomic alterations in esophageal squamous cell carcinoma, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization.
        Hepatogastroenterology. 2003; 50: 1857-1863
        • Panani A.D.
        • Ferti A.D.
        • Papaxoinis C.
        • et al.
        Cytogenetic data as a prognostic factor in multiple myeloma patients: involvement of 1p12 region an adverse prognostic factor.
        Anticancer Res. 2004; 24: 4141-4146
        • Neri A.
        • Baldini L.
        • Trecca D.
        • et al.
        p53 gene mutations in multiple myeloma are associated with advanced forms of malignancy.
        Blood. 1993; 81: 128-135
        • Preudhomme C.
        • Facon T.
        • Zandecki M.
        • et al.
        Rare occurrence of P53 gene mutations in multiple myeloma.
        Br J Haematol. 1992; 81: 440-443
        • Portier M.
        • Moles J.P.
        • Mazars G.R.
        • et al.
        p53 and RAS gene mutations in multiple myeloma.
        Oncogene. 1992; 7: 2539-2543
        • Corradini P.
        • Inghirami G.
        • Astolfi M.
        • et al.
        Inactivation of tumor suppressor genes, p53 and Rb1, in plasma cell dyscrasias.
        Leukemia. 1994; 8: 758-767
        • Mazars G.R.
        • Portier M.
        • Zhang X.G.
        • et al.
        Mutations of the p53 gene in human myeloma cell lines.
        Oncogene. 1992; 7: 1015-1018
        • Chng W.J.
        • Price-Troska T.
        • Gonzalez-Paz N.
        • et al.
        Clinical significance of TP53 mutation in myeloma.
        Leukemia. 2007; 21: 582-584
        • Avet-Loiseau H.
        • Li J.Y.
        • Godon C.
        • et al.
        P53 deletion is not a frequent event in multiple myeloma.
        Br J Haematol. 1999; 106: 717-719
        • Chang H.
        • Qi C.
        • Yi Q.L.
        • et al.
        p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation.
        Blood. 2005; 105: 358-360
        • Gertz M.A.
        • Lacy M.Q.
        • Dispenzieri A.
        • et al.
        Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy.
        Blood. 2005; 106: 2837-2840
        • Skopelitou A.
        • Hadjiyannakis M.
        • Tsenga A.
        • et al.
        Expression of C-myc p62 oncoprotein in multiple myeloma: an immunohistochemical study of 180 cases.
        Anticancer Res. 1993; 13: 1091-1095
        • Palumbo A.P.
        • Pileri A.
        • Dianzani U.
        • et al.
        Altered expression of growth-regulated protooncogenes in human malignant plasma cells.
        Cancer Res. 1989; 49: 4701-4704
        • Selvanayagam P.
        • Blick M.
        • Narni F.
        • et al.
        Alteration and abnormal expression of the c-myc oncogene in human multiple myeloma.
        Blood. 1988; 71: 30-35
        • Pope B.
        • Brown R.
        • Luo X.F.
        • et al.
        Disease progression in patients with multiple myeloma is associated with a concurrent alteration in the expression of both oncogenes and tumour suppressor genes and can be monitored by the oncoprotein phenotype.
        Leuk Lymphoma. 1997; 25: 545-554
        • Fabris S.
        • Storlazzi C.T.
        • Baldini L.
        • et al.
        Heterogeneous pattern of chromosomal breakpoints involving the MYC locus in multiple myeloma.
        Genes Chromosomes Cancer. 2003; 37: 261-269
        • Shou Y.
        • Martelli M.L.
        • Gabrea A.
        • et al.
        Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma.
        Proc Natl Acad Sci U S A. 2000; 97: 228-233
        • Hollis G.F.
        • Gazdar A.F.
        • Bertness V.
        • et al.
        Complex translocation disrupts c-myc regulation in a human plasma cell myeloma.
        Mol Cell Biol. 1988; 8: 124-129
        • Avet-Loiseau H.
        • Gerson F.
        • Magrangeas F.
        • et al.
        Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors.
        Blood. 2001; 98: 3082-3086
        • Elnenaei M.O.
        • Gruszka-Westwood A.M.
        • A'Hernt R.
        • et al.
        Gene abnormalities in multiple myeloma; the relevance of TP53, MDM2, and CDKN2A.
        Haematologica. 2003; 88: 529-537
        • Ng M.H.
        • Chung Y.F.
        • Lo K.W.
        • et al.
        Frequent hypermethylation of p16 and p15 genes in multiple myeloma.
        Blood. 1997; 89: 2500-2506
        • Gonzalez-Paz N.
        • Chng W.J.
        • McClure R.F.
        • et al.
        Tumor suppressor p16 methylation in multiple myeloma: biological and clinical implications.
        Blood. 2007; 109: 1228-1232
        • Dib A.
        • Barlogie B.
        • Shaughnessy Jr., J.D.
        • et al.
        Methylation and expression of the p16INK4A tumor suppressor gene in multiple myeloma.
        Blood. 2007; 109: 1337-1338
        • Ribas C.
        • Colleoni G.W.
        • Felix R.S.
        • et al.
        p16 gene methylation lacks correlation with angiogenesis and prognosis in multiple myeloma.
        Cancer Lett. 2005; 222: 247-254
        • Kramer A.
        • Schultheis B.
        • Bergmann J.
        • et al.
        Alterations of the cyclin D1/pRb/p16(INK4A) pathway in multiple myeloma.
        Leukemia. 2002; 16: 1844-1851
        • Sarasquete M.E.
        • Garcia-Sanz R.
        • Armellini A.
        • et al.
        The association of increased p14ARF/p16INK4a and p15INK4a gene expression with proliferative activity and the clinical course of multiple myeloma.
        Haematologica. 2006; 91: 1551-1554
        • Mateos M.V.
        • Garcia-Sanz R.
        • Lopez-Perez R.
        • et al.
        Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival.
        Br J Haematol. 2002; 118: 1034-1040
        • Dib A.
        • Peterson T.R.
        • Raducha-Grace L.
        • et al.
        Paradoxical expression of INK4c in proliferative multiple myeloma tumors: bi-allelic deletion vs increased expression.
        Cell Div. 2006; 1: 23
        • Tasaka T.
        • Berenson J.
        • Vescio R.
        • et al.
        Analysis of the p16INK4A, p15INK4B and p18INK4C genes in multiple myeloma.
        Br J Haematol. 1997; 96: 98-102
        • Matsui W.
        • Huff C.A.
        • Wang Q.
        • et al.
        Characterization of clonogenic multiple myeloma cells.
        Blood. 2004; 103: 2332-2336
        • Peacock C.D.
        • Wang Q.
        • Gesell G.S.
        • et al.
        Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma.
        Proc Natl Acad Sci U S A. 2007; 104: 4048-4053
        • Huntly B.J.
        • Gilliland D.G.
        Leukaemia stem cells and the evolution of cancer-stem-cell research.
        Nat Rev Cancer. 2005; 5: 311-321