Advertisement
Review Article| Volume 21, ISSUE 6, P1051-1069, December 2007

Mouse Models of Human Myeloma

      Multiple myeloma (MM) remains incurable despite high-dose chemotherapy with stem cell support. There is need, therefore, for continuous efforts directed toward the development of novel rational-based therapeutics for MM, which requires a detailed knowledge of the mutations driving this malignancy. In improving the success rate of effective drug development, it is equally imperative that biologic systems be developed to better validate these target genes. Here we review the recent developments in the generation of mouse models of MM and their impact as preclinical models for designing and assessing target-based therapeutic approaches.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Hematology/Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mitsiades C.S.
        • Mitsiades N.
        • Munshi N.C.
        • et al.
        Focus on multiple myeloma.
        Cancer Cell. 2004; 6: 439-444
        • Urashima M.
        • Chen B.P.
        • Chen S.
        • et al.
        The development of a model for the homing of multiple myeloma cells to human bone marrow.
        Blood. 1997; 90: 754-765
        • Hjorth-Hansen H.
        • Seifert M.F.
        • Borset M.
        • et al.
        Marked osteoblastopenia and reduced bone formation in a model of multiple myeloma bone disease in severe combined immunodeficiency mice.
        J Bone Miner Res. 1999; 14: 256-263
        • Mitsiades C.S.
        • Mitsiades N.S.
        • Bronson R.T.
        • et al.
        Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications.
        Cancer Res. 2003; 63: 6689-6696
        • Radl J.
        • De Glopper E.D.
        • Schuit H.R.
        • et al.
        Idiopathic paraproteinemia. II. Transplantation of the paraprotein-producing clone from old to young C57BL/KaLwRij mice.
        J Immunol. 1979; 122: 609-613
        • Tong A.W.
        • Huang Y.W.
        • Zhang B.Q.
        • et al.
        Heterotransplantation of human multiple myeloma cell lines in severe combined immunodeficiency (SCID) mice.
        Anticancer Res. 1993; 13: 593-597
        • LeBlanc R.
        • Catley L.P.
        • Hideshima T.
        • et al.
        Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model.
        Cancer Res. 2002; 62: 4996-5000
        • Chauhan D.
        • Hideshima T.
        • Anderson K.C.
        A novel proteasome inhibitor NPI-0052 as an anticancer therapy.
        Br J Cancer. 2006; 95: 961-965
        • Lentzsch S.
        • Rogers M.S.
        • LeBlanc R.
        • et al.
        S-3-Amino-phthalimido-glutarimide inhibits angiogenesis and growth of B-cell neoplasias in mice.
        Cancer Res. 2002; 62: 2300-2305
        • Sydor J.R.
        • Normant E.
        • Pien C.S.
        • et al.
        Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90.
        Proc Natl Acad Sci U S A. 2006; 103: 17408-17413
        • Hideshima T.
        • Catley L.
        • Yasui H.
        • et al.
        Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells.
        Blood. 2006; 107: 4053-4062
        • Trudel S.
        • Stewart A.K.
        • Rom E.
        • et al.
        The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells.
        Blood. 2006; 107: 4039-4046
        • Trudel S.
        • Ely S.
        • Farooqi Y.
        • et al.
        Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma.
        Blood. 2004; 103: 3521-3528
        • Trudel S.
        • Li Z.H.
        • Wei E.
        • et al.
        CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma.
        Blood. 2005; 105: 2941-2948
        • Mitsiades C.S.
        • Treon S.P.
        • Mitsiades N.
        • et al.
        TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications.
        Blood. 2001; 98: 795-804
        • Trudel S.
        • Stewart A.K.
        • Li Z.
        • et al.
        The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan.
        Clin Cancer Res. 2007; 13: 621-629
        • Podar K.
        • Tonon G.
        • Sattler M.
        • et al.
        The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma.
        Proc Natl Acad Sci U S A. 2006; 103: 19478-19483
        • Navas T.A.
        • Nguyen A.N.
        • Hideshima T.
        • et al.
        Inhibition of p38alpha MAPK enhances proteasome inhibitor-induced apoptosis of myeloma cells by modulating Hsp27, Bcl-X(L), Mcl-1 and p53 levels in vitro and inhibits tumor growth in vivo.
        Leukemia. 2006; 20: 1017-1027
        • Lin B.
        • Catley L.
        • LeBlanc R.
        • et al.
        Patupilone (epothilone B) inhibits growth and survival of multiple myeloma cells in vitro and in vivo.
        Blood. 2005; 105: 350-357
        • Yan H.
        • Frost P.
        • Shi Y.
        • et al.
        Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis.
        Cancer Res. 2006; 66: 2305-2313
        • Suzuki H.
        • Yasukawa K.
        • Saito T.
        • et al.
        Anti-human interleukin-6 receptor antibody inhibits human myeloma growth in vivo.
        Eur J Immunol. 1992; 22: 1989-1993
        • Ozaki S.
        • Kosaka M.
        • Harada M.
        • et al.
        Radioimmunodetection of human myeloma xenografts with a monoclonal antibody directed against a plasma cell specific antigen, HM1.24.
        Cancer. 1998; 82: 2184-2190
        • Hideshima T.
        • Bergsagel P.L.
        • Kuehl W.M.
        • et al.
        Advances in biology of multiple myeloma: clinical applications.
        Blood. 2004; 104: 607-618
        • Namikawa R.
        • Kaneshima H.
        • Lieberman M.
        • et al.
        Infection of the SCID-hu mouse by HIV-1.
        Science. 1988; 242: 1684-1686
        • McCune J.M.
        • Namikawa R.
        • Kaneshima H.
        • et al.
        The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function.
        Science. 1988; 241: 1632-1639
        • Yaccoby S.
        • Barlogie B.
        • Epstein J.
        Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations.
        Blood. 1998; 92: 2908-2913
        • Epstein J.
        • Yaccoby S.
        The SCID-hu myeloma model.
        Methods Mol Med. 2005; 113: 183-190
        • Yaccoby S.
        • Epstein J.
        The proliferative potential of myeloma plasma cells manifest in the SCID-hu host.
        Blood. 1999; 94: 3576-3582
        • Yaccoby S.
        • Johnson C.L.
        • Mahaffey S.C.
        • et al.
        Antimyeloma efficacy of thalidomide in the SCID-hu model.
        Blood. 2002; 100: 4162-4168
        • Pearse R.N.
        • Sordillo E.M.
        • Yaccoby S.
        • et al.
        Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression.
        Proc Natl Acad Sci U S A. 2001; 98: 11581-11586
        • Yaccoby S.
        • Pearse R.N.
        • Johnson C.L.
        • et al.
        Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity.
        Br J Haematol. 2002; 116: 278-290
        • Sordillo E.M.
        • Pearse R.N.
        RANK-Fc: a therapeutic antagonist for RANK-L in myeloma.
        Cancer. 2003; 97: 802-812
        • Hideshima T.
        • Neri P.
        • Tassone P.
        • et al.
        MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo.
        Clin Cancer Res. 2006; 12: 5887-5894
        • Zhu K.
        • Gerbino E.
        • Beaupre D.M.
        • et al.
        Farnesyltransferase inhibitor R115777 (Zarnestra, Tipifarnib) synergizes with paclitaxel to induce apoptosis and mitotic arrest and to inhibit tumor growth of multiple myeloma cells.
        Blood. 2005; 105: 4759-4766
        • Tassone P.
        • Goldmacher V.S.
        • Neri P.
        • et al.
        Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells.
        Blood. 2004; 104: 3688-3696
        • Araki K.
        • Sangai T.
        • Miyamoto S.
        • et al.
        Inhibition of bone-derived insulin-like growth factors by a ligand-specific antibody suppresses the growth of human multiple myeloma in the human adult bone explanted in NOD/SCID mouse.
        Int J Cancer. 2006; 118: 2602-2608
        • Tassone P.
        • Neri P.
        • Burger R.
        • et al.
        Combination therapy with interleukin-6 receptor superantagonist Sant7 and dexamethasone induces antitumor effects in a novel SCID-hu In vivo model of human multiple myeloma.
        Clin Cancer Res. 2005; 11: 4251-4258
        • Tassone P.
        • Gozzini A.
        • Goldmacher V.
        • et al.
        In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells.
        Cancer Res. 2004; 64: 4629-4636
        • Yata K.
        • Yaccoby S.
        The SCID-rab model: a novel in vivo system for primary human myeloma demonstrating growth of CD138-expressing malignant cells.
        Leukemia. 2004; 18: 1891-1897
        • Pilarski L.M.
        • Hipperson G.
        • Seeberger K.
        • et al.
        Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice.
        Blood. 2000; 95: 1056-1065
        • Pilarski L.M.
        • Seeberger K.
        • Coupland R.W.
        • et al.
        Leukemic B cells clonally identical to myeloma plasma cells are myelomagenic in NOD/SCID mice.
        Exp Hematol. 2002; 30: 221-228
        • Tsunenari T.
        • Koishihara Y.
        • Nakamura A.
        • et al.
        New xenograft model of multiple myeloma and efficacy of a humanized antibody against human interleukin-6 receptor.
        Blood. 1997; 90: 2437-2444
        • Miyakawa Y.
        • Ohnishi Y.
        • Tomisawa M.
        • et al.
        Establishment of a new model of human multiple myeloma using NOD/SCID/gammac(null) (NOG) mice.
        Biochem Biophys Res Commun. 2004; 313: 258-262
        • Mitsiades C.S.
        • Mitsiades N.S.
        • McMullan C.J.
        • et al.
        Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors.
        Cancer Cell. 2004; 5: 221-230
        • Dewan M.Z.
        • Watanabe M.
        • Terashima K.
        • et al.
        Prompt tumor formation and maintenance of constitutive NF-kappaB activity of multiple myeloma cells in NOD/SCID/gammacnull mice.
        Cancer Sci. 2004; 95: 564-568
        • Wu K.D.
        • Cho Y.S.
        • Katz J.
        • et al.
        Investigation of antitumor effects of synthetic epothilone analogs in human myeloma models in vitro and in vivo.
        Proc Natl Acad Sci U S A. 2005; 102: 10640-10645
        • Mitsiades C.S.
        • Mitsiades N.S.
        • McMullan C.J.
        • et al.
        Antimyeloma activity of heat shock protein-90 inhibition.
        Blood. 2006; 107: 1092-1100
        • Xin X.
        • Abrams T.J.
        • Hollenbach P.W.
        • et al.
        CHIR-258 is efficacious in a newly developed fibroblast growth factor receptor 3-expressing orthotopic multiple myeloma model in mice.
        Clin Cancer Res. 2006; 12: 4908-4915
        • Carlo-Stella C.
        • Guidetti A.
        • Di Nicola M.
        • et al.
        CD52 antigen expressed by malignant plasma cells can be targeted by alemtuzumab in vivo in NOD/SCID mice.
        Exp Hematol. 2006; 34: 721-727
        • Baughn L.B.
        • Di Liberto M.
        • Wu K.
        • et al.
        A novel orally active small molecule potently induces G1 arrest in primary myeloma cells and prevents tumor growth by specific inhibition of cyclin-dependent kinase 4/6.
        Cancer Res. 2006; 66: 7661-7667
        • Wu K.D.
        • Zhou L.
        • Burtrum D.
        • et al.
        Antibody targeting of the insulin-like growth factor I receptor enhances the anti-tumor response of multiple myeloma to chemotherapy through inhibition of tumor proliferation and angiogenesis.
        Cancer Immunol Immunother. 2007; 56: 343-357
        • Huang Y.W.
        • Richardson J.A.
        • Tong A.W.
        • et al.
        Disseminated growth of a human multiple myeloma cell line in mice with severe combined immunodeficiency disease.
        Cancer Res. 1993; 53: 1392-1396
        • Alsina M.
        • Boyce B.F.
        • Mundy G.R.
        • et al.
        An in vivo model of human multiple myeloma bone disease.
        Stem Cells. 1995; 13: 48-50
        • Alsina M.
        • Boyce B.
        • Devlin R.D.
        • et al.
        Development of an in vivo model of human multiple myeloma bone disease.
        Blood. 1996; 87: 1495-1501
        • Bellamy W.T.
        • Mendibles P.
        • Bontje P.
        • et al.
        Development of an orthotopic SCID mouse-human tumor xenograft model displaying the multidrug-resistant phenotype.
        Cancer Chemother Pharmacol. 1996; 37: 305-316
        • Drexler H.G.
        • Matsuo Y.
        • MacLeod R.A.
        Persistent use of false myeloma cell lines.
        Hum Cell. 2003; 16: 101-105
        • Pilarski L.M.
        • Belch A.R.
        Clonotypic myeloma cells able to xenograft myeloma to nonobese diabetic severe combined immunodeficient mice copurify with CD34 (+) hematopoietic progenitors.
        Clin Cancer Res. 2002; 8: 3198-3204
        • Kuehl W.M.
        • Bergsagel P.L.
        Multiple myeloma: evolving genetic events and host interactions.
        Nat Rev Cancer. 2002; 2: 175-187
        • Tassone P.
        • Neri P.
        • Carrasco D.R.
        • et al.
        A clinically relevant SCID-hu in vivo model of human multiple myeloma.
        Blood. 2005; 106: 713-716
        • Alici E.
        • Konstantinidis K.V.
        • Aints A.
        • et al.
        Visualization of 5T33 myeloma cells in the C57BL/KaLwRij mouse: establishment of a new syngeneic murine model of multiple myeloma.
        Exp Hematol. 2004; 32: 1064-1072
        • Heath D.J.
        • Vanderkerken K.
        • Cheng X.
        • et al.
        An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma.
        Cancer Res. 2007; 67: 202-208
        • Potter M.
        Neoplastic development in plasma cells.
        Immunol Rev. 2003; 194: 177-195
        • Libouban H.
        • Moreau M.F.
        • Basle M.F.
        • et al.
        Increased bone remodeling due to ovariectomy dramatically increases tumoral growth in the 5T2 multiple myeloma mouse model.
        Bone. 2003; 33: 283-292
        • Croucher P.I.
        • Shipman C.M.
        • Van Camp B.
        • et al.
        Bisphosphonates and osteoprotegerin as inhibitors of myeloma bone disease.
        Cancer. 2003; 97: 818-824
        • Asosingh K.
        • Vankerkhove V.
        • Van Riet I.
        • et al.
        Selective in vivo growth of lymphocyte function- associated antigen-1-positive murine myeloma cells. Involvement of function-associated antigen-1-mediated homotypic cell-cell adhesion.
        Exp Hematol. 2003; 31: 48-55
        • Asosingh K.
        Migration, adhesion and differentiation of malignant plasma cells in the 5T murine model of myeloma.
        Verh K Acad Geneeskd Belg. 2003; 65: 127-134
        • Vanderkerken K.
        • Vande Broek I.
        • Eizirik D.L.
        • et al.
        Monocyte chemoattractant protein-1 (MCP-1), secreted by bone marrow endothelial cells, induces chemoattraction of 5T multiple myeloma cells.
        Clin Exp Metastasis. 2002; 19: 87-90
        • Van Valckenborgh E.
        • De Raeve H.
        • Devy L.
        • et al.
        Murine 5T multiple myeloma cells induce angiogenesis in vitro and in vivo.
        Br J Cancer. 2002; 86: 796-802
        • Van Valckenborgh E.
        • Bakkus M.
        • Munaut C.
        • et al.
        Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells.
        Int J Cancer. 2002; 101: 512-518
        • Menu E.
        • Braet F.
        • Timmers M.
        • et al.
        The F-actin content of multiple myeloma cells as a measure of their migration.
        Ann N Y Acad Sci. 2002; 973: 124-136
        • Asosingh K.
        • Menu E.
        • Van Valckenborgh E.
        • et al.
        Mechanisms involved in the differential bone marrow homing of CD45 subsets in 5T murine models of myeloma.
        Clin Exp Metastasis. 2002; 19: 583-591
        • Mittelman M.
        • Neumann D.
        • Peled A.
        • et al.
        Erythropoietin induces tumor regression and antitumor immune responses in murine myeloma models.
        Proc Natl Acad Sci U S A. 2001; 98: 5181-5186
        • Henry J.M.
        • Morley A.A.
        • Sykes P.J.
        Purging of myeloma cells using all-trans retinoic acid in a mouse model.
        Exp Hematol. 2001; 29: 315-321
        • Bakkus M.H.
        • Asosingh K.
        • Vanderkerken K.
        • et al.
        Myeloma isotype-switch variants in the murine 5T myeloma model: evidence that myeloma IgM and IgA expressing subclones can originate from the IgG expressing tumour.
        Leukemia. 2001; 15: 1127-1132
        • Asosingh K.
        • Gunthert U.
        • De Raeve H.
        • et al.
        A unique pathway in the homing of murine multiple myeloma cells: CD44v10 mediates binding to bone marrow endothelium.
        Cancer Res. 2001; 61: 2862-2865
        • Asosingh K.
        • De Raeve H.
        • Croucher P.
        • et al.
        In vivo homing and differentiation characteristics of mature (CD45-) and immature (CD45+) 5T multiple myeloma cells.
        Exp Hematol. 2001; 29: 77-84
        • Vanderkerken K.
        • Van Camp B.
        • De Greef C.
        • et al.
        Homing of the myeloma cell clone.
        Acta Oncol. 2000; 39: 771-776
        • Vanderkerken K.
        • De Greef C.
        • Asosingh K.
        • et al.
        Selective initial in vivo homing pattern of 5T2 multiple myeloma cells in the C57BL/KalwRij mouse.
        Br J Cancer. 2000; 82: 953-959
        • Oyajobi B.O.
        • Deng J.H.
        • Dallas S.L.
        • et al.
        Absence of herpesvirus DNA sequences in the 5T murine model of human multiple myeloma.
        Br J Haematol. 2000; 109: 413-419
        • Asosingh K.
        • Radl J.
        • Van Riet I.
        • et al.
        The 5TMM series: a useful in vivo mouse model of human multiple myeloma.
        Hematol J. 2000; 1: 351-356
        • Vanderkerken K.
        • Asosingh K.
        • Braet F.
        • et al.
        Insulin-like growth factor-1 acts as a chemoattractant factor for 5T2 multiple myeloma cells.
        Blood. 1999; 93: 235-241
        • Manning L.S.
        • Radin N.S.
        Effects of the glucolipid synthase inhibitor, P4, on functional and phenotypic parameters of murine myeloma cells.
        Br J Cancer. 1999; 81: 952-958
        • Zhu D.
        • van Arkel C.
        • King C.A.
        • et al.
        Immunoglobulin VH gene sequence analysis of spontaneous murine immunoglobulin-secreting B-cell tumours with clinical features of human disease.
        Immunology. 1998; 93: 162-170
        • Vanderkerken K.
        • De Raeve H.
        • Goes E.
        • et al.
        Organ involvement and phenotypic adhesion profile of 5T2 and 5T33 myeloma cells in the C57BL/KaLwRij mouse.
        Br J Cancer. 1997; 76: 451-460
        • Vanderkerken K.
        • Goes E.
        • De Raeve H.
        • et al.
        Follow-up of bone lesions in an experimental multiple myeloma mouse model: description of an in vivo technique using radiography dedicated for mammography.
        Br J Cancer. 1996; 73: 1463-1465
        • van den Akker T.W.
        • Radl J.
        • Franken-Postma E.
        • et al.
        Cytogenetic findings in mouse multiple myeloma and Waldenstrom's macroglobulinemia.
        Cancer Genet Cytogenet. 1996; 86: 156-161
        • Bradley T.R.
        • Kriegler A.B.
        • Verschoor S.M.
        • et al.
        Interaction between a murine myeloma cell line and bone marrow stromal cells.
        Exp Hematol. 1996; 24: 307-309
        • Manning L.S.
        • Chamberlain N.L.
        • Leahy M.F.
        • et al.
        Assessment of the therapeutic potential of cytokines, cytotoxic drugs and effector cell populations for the treatment of multiple myeloma using the 5T33 murine myeloma model.
        Immunol Cell Biol. 1995; 73: 326-332
        • Turner J.H.
        • Claringbold P.G.
        • Manning L.S.
        • et al.
        Radiopharmaceutical therapy of 5T33 murine myeloma by sequential treatment with samarium-153 ethylenediaminetetramethylene phosphonate, melphalan, and bone marrow transplantation.
        J Natl Cancer Inst. 1993; 85: 1508-1513
        • Manning L.S.
        • Berger J.D.
        • O'Donoghue H.L.
        • et al.
        A model of multiple myeloma: culture of 5T33 murine myeloma cells and evaluation of tumorigenicity in the C57BL/KaLwRij mouse.
        Br J Cancer. 1992; 66: 1088-1093
        • Croese J.W.
        • Vissinga C.S.
        • Boersma W.J.
        • et al.
        Immune regulation of mouse 5T2 multiple myeloma. I. Immune response to 5T2 MM idiotype.
        Neoplasma. 1991; 38: 457-466
        • Croese J.W.
        • Van den Enden-Vieveen M.H.
        • Radl J.
        Immune regulation of 5T2 mouse multiple myeloma. II. Immunological treatment of 5T2 MM residual disease.
        Neoplasma. 1991; 38: 467-474
        • Radl J.
        • Punt Y.A.
        • van den Enden-Vieveen M.H.
        • et al.
        The 5T mouse multiple myeloma model: absence of c-myc oncogene rearrangement in early transplant generations.
        Br J Cancer. 1990; 61: 276-278
        • Croese J.W.
        • Vas Nunes C.M.
        • Radl J.
        • et al.
        The 5T2 mouse multiple myeloma model: characterization of 5T2 cells within the bone marrow.
        Br J Cancer. 1987; 56: 555-560
        • Radl J.
        • Croese J.W.
        • Zurcher C.
        • et al.
        Influence of treatment with APD-bisphosphonate on the bone lesions in the mouse 5T2 multiple myeloma.
        Cancer. 1985; 55: 1030-1040
        • Radl J.
        • Hollander C.F.
        • van den Berg P.
        • et al.
        Idiopathic paraproteinaemia. I. Studies in an animal model–the ageing C57BL/KaLwRij mouse.
        Clin Exp Immunol. 1978; 33: 395-402
        • Menu E.
        • De Leenheer E.
        • De Raeve H.
        • et al.
        Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model.
        Clin Exp Metastasis. 2006; 23: 291-300
        • Menu E.
        • Asosingh K.
        • Indraccolo S.
        • et al.
        The involvement of stromal derived factor 1alpha in homing and progression of multiple myeloma in the 5TMM model.
        Haematologica. 2006; 91: 605-612
        • Asosingh K.
        • De Raeve H.
        • de Ridder M.
        • et al.
        Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression.
        Haematologica. 2005; 90: 810-817
        • Croucher P.I.
        • De Hendrik R.
        • Perry M.J.
        • et al.
        Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival.
        J Bone Miner Res. 2003; 18: 482-492
        • Menu E.
        • Jernberg-Wiklund H.
        • Stromberg T.
        • et al.
        Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model.
        Blood. 2006; 107: 655-660
        • Edwards C.M.
        • Mueller G.
        • Roelofs A.J.
        • et al.
        Apominetrade mark, an inhibitor of HMG-CoA-reductase, promotes apoptosis of myeloma cells in vitro and is associated with a modulation of myeloma in vivo.
        Int J Cancer. 2007; 120: 1657-1663
        • Libouban H.
        • Moreau M.F.
        • Basle M.F.
        • et al.
        Selection of a highly aggressive myeloma cell line by an altered bone microenvironment in the C57BL/KaLwRij mouse.
        Biochem Biophys Res Commun. 2004; 316: 859-866
        • Campbell R.A.
        • Manyak S.J.
        • Yang H.H.
        • et al.
        LAGlambda-1: a clinically relevant drug resistant human multiple myeloma tumor murine model that enables rapid evaluation of treatments for multiple myeloma.
        Int J Oncol. 2006; 28: 1409-1417
        • Iwakoshi N.N.
        • Lee A.H.
        • Glimcher L.H.
        The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response.
        Immunol Rev. 2003; 194: 29-38
        • Radl J.
        Multiple myeloma and related disorders. Lessons from an animal model.
        Pathol Biol (Paris). 1999; 47: 109-114
        • Potter M.
        Experimental plasmacytomagenesis in mice.
        Hematol Oncol Clin North Am. 1997; 11: 323-347
        • Zhang S.L.
        • DuBois W.
        • Ramsay E.S.
        • et al.
        Efficiency alleles of the Pctr1 modifier locus for plasmacytoma susceptibility.
        Mol Cell Biol. 2001; 21: 310-318
        • Kovalchuk A.L.
        • Kim J.S.
        • Park S.S.
        • et al.
        IL-6 transgenic mouse model for extraosseous plasmacytoma.
        Proc Natl Acad Sci U S A. 2002; 99: 1509-1514
        • Chiarle R.
        • Gong J.Z.
        • Guasparri I.
        • et al.
        NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors.
        Blood. 2003; 101: 1919-1927
        • Cheung W.C.
        • Kim J.S.
        • Linden M.
        • et al.
        Novel targeted deregulation of c-Myc cooperates with Bcl-X(L) to cause plasma cell neoplasms in mice.
        J Clin Invest. 2004; 113: 1763-1773
        • Kim J.S.
        • Han S.S.
        • Park S.S.
        • et al.
        Plasma cell tumour progression in iMycEmu gene-insertion mice.
        J Pathol. 2006; 209: 44-55
        • Sebag M.
        • Stewart K.
        • Palmer S.
        • et al.
        A novel transgenic mouse model of multiple myeloma reliably predicts drug response.
        Blood. 2006; 108: 75a
        • Carrasco D.R.
        • Sukhdeo K.
        • Protopopova M.
        • et al.
        The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis.
        Cancer Cell. 2007; 11: 349-360